Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1996 Aug;62(8):2966–2969. doi: 10.1128/aem.62.8.2966-2969.1996

Structure-activity relationships in the peptide antibiotic nisin: role of dehydroalanine 5.

W C Chan 1, H M Dodd 1, N Horn 1, K Maclean 1, L Y Lian 1, B W Bycroft 1, M J Gasson 1, G C Roberts 1
PMCID: PMC168084  PMID: 8702290

Abstract

A mutant of the peptide antibiotic nisin in which the dehydroalanine residue at position 5 has been replaced by an alanine has been produced and structurally characterized. It is shown to have activity very similar to that of wild-type nisin in inhibiting growth of Lactococcus lactis and Micrococcus luteus but is very much less active than nisin as an inhibitor of the outgrowth of spores of Bacillus subtilis. These observations, which parallel those of W. Liu and J. N. Hansen (Appl. Environ. Microbiol. 59:648-651, 1993) on the corresponding mutant of the related antibiotic subtilin, are discussed in terms of the mechanism(s) of action of these antibiotics.

Full Text

The Full Text of this article is available as a PDF (185.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Buchman G. W., Banerjee S., Hansen J. N. Structure, expression, and evolution of a gene encoding the precursor of nisin, a small protein antibiotic. J Biol Chem. 1988 Nov 5;263(31):16260–16266. [PubMed] [Google Scholar]
  2. Chan W. C., Bycroft B. W., Leyland M. L., Lian L. Y., Yang J. C., Roberts G. C. Sequence-specific resonance assignment and conformational analysis of subtilin by 2D NMR. FEBS Lett. 1992 Mar 23;300(1):56–62. doi: 10.1016/0014-5793(92)80163-b. [DOI] [PubMed] [Google Scholar]
  3. Dodd H. M., Horn N., Gasson M. J. A cassette vector for protein engineering the lantibiotic nisin. Gene. 1995 Aug 30;162(1):163–164. doi: 10.1016/0378-1119(95)00342-4. [DOI] [PubMed] [Google Scholar]
  4. Dodd H. M., Horn N., Gasson M. J. Analysis of the genetic determinant for production of the peptide antibiotic nisin. J Gen Microbiol. 1990 Mar;136(3):555–566. doi: 10.1099/00221287-136-3-555. [DOI] [PubMed] [Google Scholar]
  5. Dodd H. M., Horn N., Giffard C. J., Gasson M. J. A gene replacement strategy for engineering nisin. Microbiology. 1996 Jan;142(Pt 1):47–55. doi: 10.1099/13500872-142-1-47. [DOI] [PubMed] [Google Scholar]
  6. Gross E., Morell J. L. The structure of nisin. J Am Chem Soc. 1971 Sep 8;93(18):4634–4635. doi: 10.1021/ja00747a073. [DOI] [PubMed] [Google Scholar]
  7. Hill P. J., Hall L., Vinicombe D. A., Soper C. J., Setlow P., Waites W. M., Denyer S., Stewart G. S. Bioluminescence and spores as biological indicators of inimical processes. Soc Appl Bacteriol Symp Ser. 1994;23:129S–134S. doi: 10.1111/j.1365-2672.1994.tb04364.x. [DOI] [PubMed] [Google Scholar]
  8. Kaletta C., Entian K. D. Nisin, a peptide antibiotic: cloning and sequencing of the nisA gene and posttranslational processing of its peptide product. J Bacteriol. 1989 Mar;171(3):1597–1601. doi: 10.1128/jb.171.3.1597-1601.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lian L. Y., Chan W. C., Morley S. D., Roberts G. C., Bycroft B. W., Jackson D. Solution structures of nisin A and its two major degradation products determined by n.m.r. Biochem J. 1992 Apr 15;283(Pt 2):413–420. doi: 10.1042/bj2830413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Liu W., Hansen J. N. Enhancement of the chemical and antimicrobial properties of subtilin by site-directed mutagenesis. J Biol Chem. 1992 Dec 15;267(35):25078–25085. [PubMed] [Google Scholar]
  11. Liu W., Hansen J. N. The antimicrobial effect of a structural variant of subtilin against outgrowing Bacillus cereus T spores and vegetative cells occurs by different mechanisms. Appl Environ Microbiol. 1993 Feb;59(2):648–651. doi: 10.1128/aem.59.2.648-651.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Moll G. N., Roberts G. C., Konings W. N., Driessen A. J. Mechanism of lantibiotic-induced pore-formation. Antonie Van Leeuwenhoek. 1996 Feb;69(2):185–191. doi: 10.1007/BF00399423. [DOI] [PubMed] [Google Scholar]
  13. Morris S. L., Walsh R. C., Hansen J. N. Identification and characterization of some bacterial membrane sulfhydryl groups which are targets of bacteriostatic and antibiotic action. J Biol Chem. 1984 Nov 10;259(21):13590–13594. [PubMed] [Google Scholar]
  14. Mulders J. W., Boerrigter I. J., Rollema H. S., Siezen R. J., de Vos W. M. Identification and characterization of the lantibiotic nisin Z, a natural nisin variant. Eur J Biochem. 1991 Nov 1;201(3):581–584. doi: 10.1111/j.1432-1033.1991.tb16317.x. [DOI] [PubMed] [Google Scholar]
  15. Rauch P. J., Beerthuyzen M. M., de Vos W. M. Nucleotide sequence of IS904 from Lactococcus lactis subsp. lactis strain NIZO R5. Nucleic Acids Res. 1990 Jul 25;18(14):4253–4254. doi: 10.1093/nar/18.14.4253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Ruhr E., Sahl H. G. Mode of action of the peptide antibiotic nisin and influence on the membrane potential of whole cells and on cytoplasmic and artificial membrane vesicles. Antimicrob Agents Chemother. 1985 May;27(5):841–845. doi: 10.1128/aac.27.5.841. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Van de Ven F. J., Van den Hooven H. W., Konings R. N., Hilbers C. W. NMR studies of lantibiotics. The structure of nisin in aqueous solution. Eur J Biochem. 1991 Dec 18;202(3):1181–1188. doi: 10.1111/j.1432-1033.1991.tb16488.x. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES