Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1996 Aug;62(8):3005–3010. doi: 10.1128/aem.62.8.3005-3010.1996

An obligately endosymbiotic mycorrhizal fungus itself harbors obligately intracellular bacteria.

V Bianciotto 1, C Bandi 1, D Minerdi 1, M Sironi 1, H V Tichy 1, P Bonfante 1
PMCID: PMC168087  PMID: 8702293

Abstract

Arbuscular-mycorrhizal fungi are obligate endosymbionts that colonize the roots of almost 80% of land plants. This paper describes the employment of a combined morphological and molecular approach to demonstrate that the cytoplasm of the arbuscular-mycorrhizal fungus Gigaspora margarita harbors a further bacterial endosymbiont. Intracytoplasmic bacterium-like organisms (BLOs) were detected ultrastructurally in its spores and germinating and symbiotic mycelia. Morphological observations with a fluorescent stain revealed about 250,000 live bacteria inside each spore. The sequence for the small-subunit rRNA gene obtained for the BLOs from the spores was compared with those for representatives of the eubacterial lineages. Molecular phylogenetic analysis unambiguously showed that the endosymbiont of G. margarita was an rRNA group II pseudomanad (genus Burkholderia). PCR assays with specifically designed oligonucleotides were used to check that the sequence came from the BLOs. Successful amplification was obtained when templates from both the spores and the symbiotic mycelia were used. A band of the expected length was also obtained from spores of a Scutellospora sp. No bands were given by the negative controls. These findings indicate that mycorrhizal systems can include plant, fungal, and bacterial cells.

Full Text

The Full Text of this article is available as a PDF (720.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amann R. I., Ludwig W., Schleifer K. H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev. 1995 Mar;59(1):143–169. doi: 10.1128/mr.59.1.143-169.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bandi C., Damiani G., Magrassi L., Grigolo A., Fani R., Sacchi L. Flavobacteria as intracellular symbionts in cockroaches. Proc Biol Sci. 1994 Jul 22;257(1348):43–48. doi: 10.1098/rspb.1994.0092. [DOI] [PubMed] [Google Scholar]
  3. Bandi C., Sironi M., Damiani G., Magrassi L., Nalepa C. A., Laudani U., Sacchi L. The establishment of intracellular symbiosis in an ancestor of cockroaches and termites. Proc Biol Sci. 1995 Mar 22;259(1356):293–299. doi: 10.1098/rspb.1995.0043. [DOI] [PubMed] [Google Scholar]
  4. Distel D. L., Cavanaugh C. M. Independent phylogenetic origins of methanotrophic and chemoautotrophic bacterial endosymbioses in marine bivalves. J Bacteriol. 1994 Apr;176(7):1932–1938. doi: 10.1128/jb.176.7.1932-1938.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Maidak B. L., Larsen N., McCaughey M. J., Overbeek R., Olsen G. J., Fogel K., Blandy J., Woese C. R. The Ribosomal Database Project. Nucleic Acids Res. 1994 Sep;22(17):3485–3487. doi: 10.1093/nar/22.17.3485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Munson M. A., Baumann P., Clark M. A., Baumann L., Moran N. A., Voegtlin D. J., Campbell B. C. Evidence for the establishment of aphid-eubacterium endosymbiosis in an ancestor of four aphid families. J Bacteriol. 1991 Oct;173(20):6321–6324. doi: 10.1128/jb.173.20.6321-6324.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ochman H., Wilson A. C. Evolution in bacteria: evidence for a universal substitution rate in cellular genomes. J Mol Evol. 1987;26(1-2):74–86. doi: 10.1007/BF02111283. [DOI] [PubMed] [Google Scholar]
  8. Pirozynski K. A., Malloch D. W. The origin of land plants: a matter of mycotrophism. Biosystems. 1975 Mar;6(3):153–164. doi: 10.1016/0303-2647(75)90023-4. [DOI] [PubMed] [Google Scholar]
  9. Van de Peer Y., De Wachter R. TREECON: a software package for the construction and drawing of evolutionary trees. Comput Appl Biosci. 1993 Apr;9(2):177–182. doi: 10.1093/bioinformatics/9.2.177. [DOI] [PubMed] [Google Scholar]
  10. Woese C. R. Bacterial evolution. Microbiol Rev. 1987 Jun;51(2):221–271. doi: 10.1128/mr.51.2.221-271.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Yabuuchi E., Kosako Y., Oyaizu H., Yano I., Hotta H., Hashimoto Y., Ezaki T., Arakawa M. Proposal of Burkholderia gen. nov. and transfer of seven species of the genus Pseudomonas homology group II to the new genus, with the type species Burkholderia cepacia (Palleroni and Holmes 1981) comb. nov. Microbiol Immunol. 1992;36(12):1251–1275. doi: 10.1111/j.1348-0421.1992.tb02129.x. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES