Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1996 Aug;62(8):3017–3022. doi: 10.1128/aem.62.8.3017-3022.1996

Development of techniques to genetically manipulate members of the genera Cytophaga, Flavobacterium, Flexibacter, and Sporocytophaga.

M J McBride 1, S A Baker 1
PMCID: PMC168088  PMID: 8702294

Abstract

The Bacteroides-Cytophaga-Flavobacterium branch of the eubacterial phylogenetic tree contains a diverse group of bacterial species. Techniques for the genetic manipulation of Bacteroides spp. are well developed (A. A. Salyers, N. B. Shoemaker, and E. P. Guthrie, Crit. Rev. Microbiol. 14:49-71, 1987). Recently we developed techniques to genetically manipulate the gliding bacterium Cytophaga johnsonae (M. J. McBride and M. J. Kempf, J. Bacteriol. 178:583-590, 1996). We now demonstrate that some of these techniques allow genetic manipulation of a number of environmentally or medically significant bacteria in this group. The Bacteroides transposon Tn4351 was introduced into Cytophaga hutchinsonii, Cytophaga succinicans, Flavobacterium meningosepticum, Flexibacter canadensis, Flexibacter sp. strain FS1, and Sporocytophaga myxococcoides by conjugation. Tn4351 integrated itself into the host chromosomes and conferred erythromycin resistance. We isolated several auxotrophic mutants of Flavobacterium meningosepticum following Tn4351 mutagenesis. The C. johnsonae-Escherichia coli shuttle vector pCP11 functioned in C. succinicans but not in the other bacteria. pLYL03 did not replicate in any of these bacteria and should function as a convenient suicide vector. The identification of a system of gene transfer, a selectable marker, a suicide vector, and a transposon that functions in these diverse bacteria allows genetic manipulations to be performed.

Full Text

The Full Text of this article is available as a PDF (368.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ANDERSON R. L., ORDAL E. J. Cytophaga succinicans sp. n., a factaltatively anaerobic, aquatic myxobacterium. J Bacteriol. 1961 Jan;81:130–138. doi: 10.1128/jb.81.1.130-138.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Anderson K. L., Salyers A. A. Genetic evidence that outer membrane binding of starch is required for starch utilization by Bacteroides thetaiotaomicron. J Bacteriol. 1989 Jun;171(6):3199–3204. doi: 10.1128/jb.171.6.3199-3204.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bolivar F., Backman K. Plasmids of Escherichia coli as cloning vectors. Methods Enzymol. 1979;68:245–267. doi: 10.1016/0076-6879(79)68018-7. [DOI] [PubMed] [Google Scholar]
  4. Brenner D. J., Hollis D. G., Fanning G. R., Weaver R. E. Capnocytophaga canimorsus sp. nov. (formerly CDC group DF-2), a cause of septicemia following dog bite, and C. cynodegmi sp. nov., a cause of localized wound infection following dog bite. J Clin Microbiol. 1989 Feb;27(2):231–235. doi: 10.1128/jcm.27.2.231-235.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Buu-Hoi A. Y., Joundy S., Acar J. F. Endocarditis caused by Capnocytophaga ochracea. J Clin Microbiol. 1988 May;26(5):1061–1062. doi: 10.1128/jcm.26.5.1061-1062.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cheng Q., Salyers A. A. Use of suppressor analysis to find genes involved in the colonization deficiency of a Bacteroides thetaiotaomicron mutant unable to grow on the host-derived mucopolysaccharides chondroitin sulfate and heparin. Appl Environ Microbiol. 1995 Feb;61(2):734–740. doi: 10.1128/aem.61.2.734-740.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cooper R., Bush K., Principe P. A., Trejo W. H., Wells J. S., Sykes R. B. Two new monobactam antibiotics produced by a Flexibacter sp. I. Taxonomy, fermentation, isolation and biological properties. J Antibiot (Tokyo) 1983 Oct;36(10):1252–1257. doi: 10.7164/antibiotics.36.1252. [DOI] [PubMed] [Google Scholar]
  8. Dyer D. W., Bilalis G., Michel J. H., Malek R. Conjugal transfer of plasmid and transposon DNA from Escherichia coli into Porphyromonas gingivalis. Biochem Biophys Res Commun. 1992 Jul 31;186(2):1012–1019. doi: 10.1016/0006-291x(92)90847-e. [DOI] [PubMed] [Google Scholar]
  9. Fujita T., Hatanaka H., Hayashi K., Shigematsu N., Takase S., Okamoto M., Okuhara M., Shimatani K., Satoh A. FR901451, a novel inhibitor of human leukocyte elastase from Flexibacter sp. I. Producing organism, fermentation, isolation, physico-chemical and biological properties. J Antibiot (Tokyo) 1994 Dec;47(12):1359–1364. doi: 10.7164/antibiotics.47.1359. [DOI] [PubMed] [Google Scholar]
  10. Gherna R., Woese C. R. A partial phylogenetic analysis of the "flavobacter-bacteroides" phylum: basis for taxonomic restructuring. Syst Appl Microbiol. 1992 Dec;15(4):513–521. doi: 10.1016/S0723-2020(11)80110-4. [DOI] [PubMed] [Google Scholar]
  11. Hwa V., Shoemaker N. B., Salyers A. A. Direct repeats flanking the Bacteroides transposon Tn4351 are insertion sequence elements. J Bacteriol. 1988 Jan;170(1):449–451. doi: 10.1128/jb.170.1.449-451.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Imai S., Fujioka K., Furihata K., Fudo R., Yamanaka S., Seto H. Studies on cell growth stimulating substances of low molecular weight. Part 3. Resorcinin, a mammalian cell growth stimulating substance produced by Cytophaga johnsonae. J Antibiot (Tokyo) 1993 Aug;46(8):1319–1322. doi: 10.7164/antibiotics.46.1319. [DOI] [PubMed] [Google Scholar]
  13. Katayama N., Fukusumi S., Funabashi Y., Iwahi T., Ono H. TAN-1057 A-D, new antibiotics with potent antibacterial activity against methicillin-resistant Staphylococcus aureus. Taxonomy, fermentation and biological activity. J Antibiot (Tokyo) 1993 Apr;46(4):606–613. doi: 10.7164/antibiotics.46.606. [DOI] [PubMed] [Google Scholar]
  14. Kato T., Hinoo H., Shoji J., Matsumoto K., Tanimoto T., Hattori T., Hirooka K., Kondo E. PB-5266 A, B and C, new monobactams. I. Taxonomy, fermentation and isolation. J Antibiot (Tokyo) 1987 Feb;40(2):135–138. doi: 10.7164/antibiotics.40.135. [DOI] [PubMed] [Google Scholar]
  15. Li L. Y., Shoemaker N. B., Salyers A. A. Location and characteristics of the transfer region of a Bacteroides conjugative transposon and regulation of transfer genes. J Bacteriol. 1995 Sep;177(17):4992–4999. doi: 10.1128/jb.177.17.4992-4999.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Liebert C. A., Hood M. A., Deck F. H., Bishop K., Flaherty D. K. Isolation and characterization of a new Cytophaga species implicated in a work-related lung disease. Appl Environ Microbiol. 1984 Nov;48(5):936–943. doi: 10.1128/aem.48.5.936-943.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Mayatepek E., Zilow E., Pohl S. Severe intrauterine infection due to Capnocytophaga ochracea. Biol Neonate. 1991;60(3-4):184–186. doi: 10.1159/000243406. [DOI] [PubMed] [Google Scholar]
  18. McBride M. J., Kempf M. J. Development of techniques for the genetic manipulation of the gliding bacterium Cytophaga johnsonae. J Bacteriol. 1996 Feb;178(3):583–590. doi: 10.1128/jb.178.3.583-590.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Meyer R. J., Shapiro J. A. Genetic organization of the broad-host-range IncP-1 plasmid R751. J Bacteriol. 1980 Sep;143(3):1362–1373. doi: 10.1128/jb.143.3.1362-1373.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Nakagawa Y., Yamasato K. Phylogenetic diversity of the genus Cytophaga revealed by 16S rRNA sequencing and menaquinone analysis. J Gen Microbiol. 1993 Jun;139(Pt 6):1155–1161. doi: 10.1099/00221287-139-6-1155. [DOI] [PubMed] [Google Scholar]
  21. Salyers A. A., Pajeau M., McCarthy R. E. Importance of mucopolysaccharides as substrates for Bacteroides thetaiotaomicron growing in intestinal tracts of exgermfree mice. Appl Environ Microbiol. 1988 Aug;54(8):1970–1976. doi: 10.1128/aem.54.8.1970-1976.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Salyers A. A., Shoemaker N. B., Guthrie E. P. Recent advances in Bacteroides genetics. Crit Rev Microbiol. 1987;14(1):49–71. doi: 10.3109/10408418709104435. [DOI] [PubMed] [Google Scholar]
  23. Schoeb T. R., Dybvig K., Davidson M. K., Davis J. K. Cultivation of cilia-associated respiratory bacillus in artificial medium and determination of the 16S rRNA gene sequence. J Clin Microbiol. 1993 Oct;31(10):2751–2757. doi: 10.1128/jcm.31.10.2751-2757.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Shoemaker N. B., Anderson K. L., Smithson S. L., Wang G. R., Salyers A. A. Conjugal transfer of a shuttle vector from the human colonic anaerobe Bacteroides uniformis to the ruminal anaerobe Prevotella (Bacteroides) ruminicola B(1)4. Appl Environ Microbiol. 1991 Aug;57(8):2114–2120. doi: 10.1128/aem.57.8.2114-2120.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Shoemaker N. B., Getty C., Gardner J. F., Salyers A. A. Tn4351 transposes in Bacteroides spp. and mediates the integration of plasmid R751 into the Bacteroides chromosome. J Bacteriol. 1986 Mar;165(3):929–936. doi: 10.1128/jb.165.3.929-936.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Simon G. D., White D. Growth and morphological characteristics of a species of Flexibacter. Arch Mikrobiol. 1971;78(1):1–16. doi: 10.1007/BF00409084. [DOI] [PubMed] [Google Scholar]
  27. Singh P. D., Johnson J. H., Ward P. C., Wells J. S., Trejo W. H., Sykes R. B. SQ 28,332, a new monobactam produced by a Flexibacter sp. Taxonomy, fermentation, isolation, structure determination and biological properties. J Antibiot (Tokyo) 1983 Oct;36(10):1245–1251. doi: 10.7164/antibiotics.36.1245. [DOI] [PubMed] [Google Scholar]
  28. Somara S., Siddavattam D. Plasmid mediated organophosphate pesticide degradation by Flavobacterium balustinum. Biochem Mol Biol Int. 1995 Jul;36(3):627–631. [PubMed] [Google Scholar]
  29. Suzuki K., Yamaguchi H., Miyazaki S., Nagai K., Watanabe S., Saito T., Ishii K., Hanada M., Sekine T., Ikegami Y. Topostin, a novel inhibitor of mammalian DNA topoisomerase I from Flexibacter topostinus sp. nov. I. Taxonomy, and fermentation of producing strain. J Antibiot (Tokyo) 1990 Feb;43(2):154–157. doi: 10.7164/antibiotics.43.154. [DOI] [PubMed] [Google Scholar]
  30. Tancula E., Feldhaus M. J., Bedzyk L. A., Salyers A. A. Location and characterization of genes involved in binding of starch to the surface of Bacteroides thetaiotaomicron. J Bacteriol. 1992 Sep;174(17):5609–5616. doi: 10.1128/jb.174.17.5609-5616.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES