Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1996 Aug;62(8):3061–3065. doi: 10.1128/aem.62.8.3061-3065.1996

Production of kanosamine by Bacillus cereus UW85.

J L Milner 1, L Silo-Suh 1, J C Lee 1, H He 1, J Clardy 1, J Handelsman 1
PMCID: PMC168096  PMID: 8702302

Abstract

Bacillus cereus UW85 produces two antibiotics that contribute to its ability to suppress certain plant diseases (L. Silo-Suh, B. Lethbridge, S. J. Raffel, H. He, J. Clardy, and J. Handelsman, Appl. Environ. Microbiol. 60:2023-2030, 1994). To enhance the understanding of disease suppression by UW85, we determined the chemical structure, regulation, and the target range of one of the antibiotics. The antibiotic was identified as 3-amino-3-deoxy-D-glucose, also known as kanosamine. Kanosamine was highly inhibitory to growth of plant-pathogenic oomycetes and moderately inhibitory to certain fungi and inhibited few bacterial species tested. Maximum accumulation of kanosamine in B. cereus UW85 culture supernatants coincided with sporulation. Kanosamine accumulation was enhanced by the addition of ferric iron and suppressed by addition of phosphate to rich medium. Kanosamine accumulation was also enhanced more than 300% by the addition of alfalfa seedling exudate to minimal medium.

Full Text

The Full Text of this article is available as a PDF (185.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Asturias J. A., Liras P., Martín J. F. Phosphate control of pabS gene transcription during candicidin biosynthesis. Gene. 1990 Sep 1;93(1):79–84. doi: 10.1016/0378-1119(90)90139-i. [DOI] [PubMed] [Google Scholar]
  2. Brakhage A. A., Browne P., Turner G. Regulation of Aspergillus nidulans penicillin biosynthesis and penicillin biosynthesis genes acvA and ipnA by glucose. J Bacteriol. 1992 Jun;174(11):3789–3799. doi: 10.1128/jb.174.11.3789-3799.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Clarke H. R., Leigh J. A., Douglas C. J. Molecular signals in the interactions between plants and microbes. Cell. 1992 Oct 16;71(2):191–199. doi: 10.1016/0092-8674(92)90348-g. [DOI] [PubMed] [Google Scholar]
  4. Dolak L. A., Castle T. M., Dietz A., Laborde A. L. 3-Amino-3-deoxyglucose produced by a Streptomyces sp. J Antibiot (Tokyo) 1980 Aug;33(8):900–901. doi: 10.7164/antibiotics.33.900. [DOI] [PubMed] [Google Scholar]
  5. Espeso E. A., Peñalva M. A. Carbon catabolite repression can account for the temporal pattern of expression of a penicillin biosynthetic gene in Aspergillus nidulans. Mol Microbiol. 1992 Jun;6(11):1457–1465. doi: 10.1111/j.1365-2958.1992.tb00866.x. [DOI] [PubMed] [Google Scholar]
  6. Fusetani N., Ejima D., Matsunaga S., Hashimoto K., Itagaki K., Akagi Y., Taga N., Suzuki K. 3-Amino-3-deoxy-D-glucose: an antibiotic produced by a deep-sea bacterium. Experientia. 1987 Apr 15;43(4):464–465. doi: 10.1007/BF01940457. [DOI] [PubMed] [Google Scholar]
  7. Georgakopoulos D. G., Hendson M., Panopoulos N. J., Schroth M. N. Analysis of Expression of a Phenazine Biosynthesis Locus of Pseudomonas aureofaciens PGS12 on Seeds with a Mutant Carrying a Phenazine Biosynthesis Locus-Ice Nucleation Reporter Gene Fusion. Appl Environ Microbiol. 1994 Dec;60(12):4573–4579. doi: 10.1128/aem.60.12.4573-4579.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gramajo H. C., Takano E., Bibb M. J. Stationary-phase production of the antibiotic actinorhodin in Streptomyces coelicolor A3(2) is transcriptionally regulated. Mol Microbiol. 1993 Mar;7(6):837–845. doi: 10.1111/j.1365-2958.1993.tb01174.x. [DOI] [PubMed] [Google Scholar]
  9. Gunderson J. H., Elwood H., Ingold A., Kindle K., Sogin M. L. Phylogenetic relationships between chlorophytes, chrysophytes, and oomycetes. Proc Natl Acad Sci U S A. 1987 Aug;84(16):5823–5827. doi: 10.1073/pnas.84.16.5823. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Halverson L. J., Handelsman J. Enhancement of soybean nodulation by Bacillus cereus UW85 in the field and in a growth chamber. Appl Environ Microbiol. 1991 Sep;57(9):2767–2770. doi: 10.1128/aem.57.9.2767-2770.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Handelsman J., Raffel S., Mester E. H., Wunderlich L., Grau C. R. Biological Control of Damping-Off of Alfalfa Seedlings with Bacillus cereus UW85. Appl Environ Microbiol. 1990 Mar;56(3):713–718. doi: 10.1128/aem.56.3.713-718.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Iwai Y., Tanaka H., Oiwa R., Shimizu S., Omura S. Studies on bacterial cell wall inhibitors. III. 3-amino-3-deoxy-D-glucose, an inhibitor of bacterial cell wall synthesis. Biochim Biophys Acta. 1977 Jun 23;498(1):223–228. doi: 10.1016/0304-4165(77)90102-7. [DOI] [PubMed] [Google Scholar]
  13. James D. W., Jr, Gutterson N. I. Multiple antibiotics produced by Pseudomonas fluorescens HV37a and their differential regulation by glucose. Appl Environ Microbiol. 1986 Nov;52(5):1183–1189. doi: 10.1128/aem.52.5.1183-1189.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Marahiel M. A., Nakano M. M., Zuber P. Regulation of peptide antibiotic production in Bacillus. Mol Microbiol. 1993 Mar;7(5):631–636. doi: 10.1111/j.1365-2958.1993.tb01154.x. [DOI] [PubMed] [Google Scholar]
  15. Martin J. F., Demain A. L. Control of antibiotic biosynthesis. Microbiol Rev. 1980 Jun;44(2):230–251. doi: 10.1128/mr.44.2.230-251.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Milner J. L., Raffel S. J., Lethbridge B. J., Handelsman J. Culture conditions that influence accumulation of zwittermicin A by Bacillus cereus UW85. Appl Microbiol Biotechnol. 1995 Aug-Sep;43(4):685–691. doi: 10.1007/BF00164774. [DOI] [PubMed] [Google Scholar]
  17. Mitchell J. E., Yang C. Y. Factors affecting growth and development of Aphanomyces euteiches. Phytopathology. 1966 Aug;56(8):917–922. [PubMed] [Google Scholar]
  18. Silo-Suh L. A., Lethbridge B. J., Raffel S. J., He H., Clardy J., Handelsman J. Biological activities of two fungistatic antibiotics produced by Bacillus cereus UW85. Appl Environ Microbiol. 1994 Jun;60(6):2023–2030. doi: 10.1128/aem.60.6.2023-2030.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Stabb E. V., Jacobson L. M., Handelsman J. Zwittermicin A-producing strains of Bacillus cereus from diverse soils. Appl Environ Microbiol. 1994 Dec;60(12):4404–4412. doi: 10.1128/aem.60.12.4404-4412.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Tanaka H., Shimizu S., Oiwa R., Iwai Y., Omura S. The site of inhibition of cell wall synthesis by 3-amino-3-deoxy-D-glucose in Staphylococcus aureus. J Biochem. 1979 Jul;86(1):155–159. [PubMed] [Google Scholar]
  21. Thomashow L. S., Weller D. M., Bonsall R. F., Pierson L. S. Production of the antibiotic phenazine-1-carboxylic Acid by fluorescent pseudomonas species in the rhizosphere of wheat. Appl Environ Microbiol. 1990 Apr;56(4):908–912. doi: 10.1128/aem.56.4.908-912.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. UMEZAWA H., UEDA M., MAEDA K., YAGISHITA K., KONDO S., OKAMI Y., UTAHARA R., OSATO Y., NITTA K., TAKEUCHI T. Production and isolation of a new antibiotic: kanamycin. J Antibiot (Tokyo) 1957 Sep;10(5):181–188. [PubMed] [Google Scholar]
  23. Umezawa S., Shibahara S., Omoto S., Takeuchi T., Umezawa H. Studies on the biosynthesis of 3-amino-3-deoxy-D-glucose. J Antibiot (Tokyo) 1968 Aug;21(8):485–491. doi: 10.7164/antibiotics.21.485. [DOI] [PubMed] [Google Scholar]
  24. Umezawa S., Umino K., Shibahara S., Hamada M., Omoto S. Fermentation of 3-amino-3-deoxy-D-glucose. J Antibiot (Tokyo) 1967 Nov;20(6):355–360. [PubMed] [Google Scholar]
  25. Umezawa S., Umino K., Shibahara S., Omoto S. Studies of aminosugars. XVII. Production of 3-amino-3-deoxy-D-glucose by Bacillus species. Bull Chem Soc Jpn. 1967 Oct;40(10):2419–2421. doi: 10.1246/bcsj.40.2419. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES