Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1996 Aug;62(8):3069–3072. doi: 10.1128/aem.62.8.3069-3072.1996

Growth of and toxin production by nonproteolytic Clostridium botulinum in cooked puréed vegetables at refrigeration temperatures.

F Carlin 1, M W Peck 1
PMCID: PMC168097  PMID: 8702303

Abstract

Seven strains of nonproteolytic Clostridium botulinum (types B, E, and F) were each inoculated into a range of anaerobic cooked puréed vegetables. After incubation at 10 degrees C for 15 to 60 days, all seven strains formed toxin in mushrooms, five did so in broccoli, four did so in cauliflower, three did so in asparagus, and one did so in kale. Growth kinetics of nonproteolytic C. botulinum type B in cooked mushrooms, cauliflower, and potatoes were determined at 16, 10, 8, and 5 degrees C. Growth and toxin production occurred in cooked cauliflower and mushrooms at all temperatures and in potatoes at 16 and 8 degrees C. The C. botulinum neurotoxin was detected within 3 to 5 days at 16 degrees C, 11 to 13 days at 10 degrees C, 10 to 34 days at 8 degrees C, and 17 to 20 days at 5 degrees C.

Full Text

The Full Text of this article is available as a PDF (178.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abrahamsson K., Gullmar B., Molin N. The effect of temperature on toxin formation and toxin stability of Clostridium botulinum type E in different environments. Can J Microbiol. 1966 Apr;12(2):385–394. doi: 10.1139/m66-052. [DOI] [PubMed] [Google Scholar]
  2. Baker D. A., Genigeorgis C., Glover J., Razavilar V. Growth and toxigenesis of C. botulinum type E in fishes packaged under modified atmospheres. Int J Food Microbiol. 1990 May;10(3-4):269–289. doi: 10.1016/0168-1605(90)90075-g. [DOI] [PubMed] [Google Scholar]
  3. Baranyi J., Roberts T. A. A dynamic approach to predicting bacterial growth in food. Int J Food Microbiol. 1994 Nov;23(3-4):277–294. doi: 10.1016/0168-1605(94)90157-0. [DOI] [PubMed] [Google Scholar]
  4. Cann D. C., Wilson B. B., Hobbs G., Shewan J. M. The growth and toxin production of Clostridium botulinum type E in certain vacuum packed fish. J Appl Bacteriol. 1965 Dec;28(3):431–436. doi: 10.1111/j.1365-2672.1965.tb02174.x. [DOI] [PubMed] [Google Scholar]
  5. Carlin F., Peck M. W. Growth and toxin production by non-proteolytic and proteolytic Clostridium botulinum in cooked vegetables. Lett Appl Microbiol. 1995 Mar;20(3):152–156. doi: 10.1111/j.1472-765x.1995.tb00414.x. [DOI] [PubMed] [Google Scholar]
  6. Eklund M. W., Poysky F. T., Wieler D. I. Characteristics of Clostridium botulinum type F isolated from the Pacific Coast of the United States. Appl Microbiol. 1967 Nov;15(6):1316–1323. doi: 10.1128/am.15.6.1316-1323.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Eklund M. W., Wieler D. I., Poysky F. T. Outgrowth and toxin production of nonproteolytic type B Clostridium botulinum at 3.3 to 5.6 C. J Bacteriol. 1967 Apr;93(4):1461–1462. doi: 10.1128/jb.93.4.1461-1462.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Huss H. H., Shaeffer I., Petersen E. R., Cann D. C. Toxin production by Clostridium botulinum type E in fresh herring in relation to the measured oxidation potential (Eh). Nord Vet Med. 1979 Feb;31(2):81–86. [PubMed] [Google Scholar]
  9. Lerke P. Evaluation of potential risk of botulism from seafood cocktails. Appl Microbiol. 1973 May;25(5):807–810. doi: 10.1128/am.25.5.807-810.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Lund B. M., Graham A. F., George S. M., Brown D. The combined effect of incubation temperature, pH and sorbic acid on the probability of growth of non-proteolytic, type B Clostridium botulinum. J Appl Bacteriol. 1990 Oct;69(4):481–492. doi: 10.1111/j.1365-2672.1990.tb01539.x. [DOI] [PubMed] [Google Scholar]
  11. Lund B. M., Peck M. W. Heat resistance and recovery of spores of non-proteolytic Clostridium botulinum in relation to refrigerated, processed foods with an extended shelf-life. Soc Appl Bacteriol Symp Ser. 1994;23:115S–128S. doi: 10.1111/j.1365-2672.1994.tb04363.x. [DOI] [PubMed] [Google Scholar]
  12. Meng J., Genigeorgis C. A. Modeling lag phase of nonproteolytic Clostridium botulinum toxigenesis in cooked turkey and chicken breast as affected by temperature, sodium lactate, sodium chloride and spore inoculum. Int J Food Microbiol. 1993 Jul;19(2):109–122. doi: 10.1016/0168-1605(93)90177-i. [DOI] [PubMed] [Google Scholar]
  13. Peck M. W., Lund B. M., Fairbairn D. A., Kaspersson A. S., Undeland P. C. Effect of heat treatment on survival of, and growth from, spores of nonproteolytic Clostridium botulinum at refrigeration temperatures. Appl Environ Microbiol. 1995 May;61(5):1780–1785. doi: 10.1128/aem.61.5.1780-1785.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Read R. B., Jr, Bradshaw J. G., Francis D. W. Growth and toxin production of Clostridium botulinum type E in milk. J Dairy Sci. 1970 Sep;53(9):1183–1186. doi: 10.3168/jds.S0022-0302(70)86365-2. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES