Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1996 Sep;62(9):3094–3100. doi: 10.1128/aem.62.9.3094-3100.1996

Mechanisms of acid resistance in enterohemorrhagic Escherichia coli.

J Lin 1, M P Smith 1, K C Chapin 1, H S Baik 1, G N Bennett 1, J W Foster 1
PMCID: PMC168100  PMID: 8795195

Abstract

Enterohemorrhagic strains of Escherichia coli must pass through the acidic gastric barrier to cause gastrointestinal disease. Taking into account the apparent low infectious dose of enterohemorrhagic E. coli, 11 O157:H7 strains and 4 commensal strains of E. coli were tested for their abilities to survive extreme acid exposures (pH 3). Three previously characterized acid resistance systems were tested. These included an acid-induced oxidative system, an acid-induced arginine-dependent system, and a glutamate-dependent system. When challenged at pH 2.0, the arginine-dependent system provided more protection in the EHEC strains than in commensal strains. However, the glutamate-dependent system provided better protection than the arginine system and appeared equally effective in all strains. Because E. coli must also endure acid stress imposed by the presence of weak acids in intestinal contents at a pH less acidic than that of the stomach, the ability of specific acid resistance systems to protect against weak acids was examined. The arginine- and glutamate-dependent systems were both effective in protecting E. coli against the bactericidal effects of a variety of weak acids. The acids tested include benzoic acid (20 mM; pH 4.0) and a volatile fatty acid cocktail composed of acetic, propionic, and butyric acids at levels approximating those present in the intestine. The oxidative system was much less effective. Several genetic aspects of E. coli acid resistance were also characterized. The alternate sigma factor RpoS was shown to be required for oxidative acid resistance but was only partially involved with the arginine- and glutamate-dependent acid resistance systems. The arginine decarboxylase system (including adi and its regulators cysB and adiY) was responsible for arginine-dependent acid resistance. The results suggest that several acid resistance systems potentially contribute to the survival of pathogenic E. coli in the different acid stress environments of the stomach (pH 1 to 3) and the intestine (pH 4.5 to 7 with high concentrations of volatile fatty acids). Of particular importance to the food industry was the finding that once induced, the acid resistance systems will remain active for prolonged periods of cold storage at 4 degrees C.

Full Text

The Full Text of this article is available as a PDF (270.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abdul-Raouf U. M., Beuchat L. R., Ammar M. S. Survival and growth of Escherichia coli O157:H7 in ground, roasted beef as affected by pH, acidulants, and temperature. Appl Environ Microbiol. 1993 Aug;59(8):2364–2368. doi: 10.1128/aem.59.8.2364-2368.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Arnold K. W., Kaspar C. W. Starvation- and stationary-phase-induced acid tolerance in Escherichia coli O157:H7. Appl Environ Microbiol. 1995 May;61(5):2037–2039. doi: 10.1128/aem.61.5.2037-2039.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Auger E. A., Redding K. E., Plumb T., Childs L. C., Meng S. Y., Bennett G. N. Construction of lac fusions to the inducible arginine- and lysine decarboxylase genes of Escherichia coli K12. Mol Microbiol. 1989 May;3(5):609–620. doi: 10.1111/j.1365-2958.1989.tb00208.x. [DOI] [PubMed] [Google Scholar]
  4. Benjamin M. M., Datta A. R. Acid tolerance of enterohemorrhagic Escherichia coli. Appl Environ Microbiol. 1995 Apr;61(4):1669–1672. doi: 10.1128/aem.61.4.1669-1672.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Besser R. E., Lett S. M., Weber J. T., Doyle M. P., Barrett T. J., Wells J. G., Griffin P. M. An outbreak of diarrhea and hemolytic uremic syndrome from Escherichia coli O157:H7 in fresh-pressed apple cider. JAMA. 1993 May 5;269(17):2217–2220. [PubMed] [Google Scholar]
  6. Blaser M. J., Newman L. S. A review of human salmonellosis: I. Infective dose. Rev Infect Dis. 1982 Nov-Dec;4(6):1096–1106. doi: 10.1093/clinids/4.6.1096. [DOI] [PubMed] [Google Scholar]
  7. Conner D. E., Kotrola J. S. Growth and survival of Escherichia coli O157:H7 under acidic conditions. Appl Environ Microbiol. 1995 Jan;61(1):382–385. doi: 10.1128/aem.61.1.382-385.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cummings J. H. Short chain fatty acids in the human colon. Gut. 1981 Sep;22(9):763–779. doi: 10.1136/gut.22.9.763. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Eklund T. The antimicrobial effect of dissociated and undissociated sorbic acid at different pH levels. J Appl Bacteriol. 1983 Jun;54(3):383–389. doi: 10.1111/j.1365-2672.1983.tb02632.x. [DOI] [PubMed] [Google Scholar]
  10. Freese E., Sheu C. W., Galliers E. Function of lipophilic acids as antimicrobial food additives. Nature. 1973 Feb 2;241(5388):321–325. doi: 10.1038/241321a0. [DOI] [PubMed] [Google Scholar]
  11. Giannella R. A., Broitman S. A., Zamcheck N. Gastric acid barrier to ingested microorganisms in man: studies in vivo and in vitro. Gut. 1972 Apr;13(4):251–256. doi: 10.1136/gut.13.4.251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Glass K. A., Loeffelholz J. M., Ford J. P., Doyle M. P. Fate of Escherichia coli O157:H7 as affected by pH or sodium chloride and in fermented, dry sausage. Appl Environ Microbiol. 1992 Aug;58(8):2513–2516. doi: 10.1128/aem.58.8.2513-2516.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gorden J., Small P. L. Acid resistance in enteric bacteria. Infect Immun. 1993 Jan;61(1):364–367. doi: 10.1128/iai.61.1.364-367.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Griffin P. M., Tauxe R. V. The epidemiology of infections caused by Escherichia coli O157:H7, other enterohemorrhagic E. coli, and the associated hemolytic uremic syndrome. Epidemiol Rev. 1991;13:60–98. doi: 10.1093/oxfordjournals.epirev.a036079. [DOI] [PubMed] [Google Scholar]
  15. Hengge-Aronis R. Survival of hunger and stress: the role of rpoS in early stationary phase gene regulation in E. coli. Cell. 1993 Jan 29;72(2):165–168. doi: 10.1016/0092-8674(93)90655-a. [DOI] [PubMed] [Google Scholar]
  16. Humphrey T. J., Mead G. C., Rowe B. Poultry meat as a source of human salmonellosis in England and Wales. Epidemiological overview. Epidemiol Infect. 1988 Apr;100(2):175–184. doi: 10.1017/s0950268800067303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lange R., Hengge-Aronis R. Identification of a central regulator of stationary-phase gene expression in Escherichia coli. Mol Microbiol. 1991 Jan;5(1):49–59. doi: 10.1111/j.1365-2958.1991.tb01825.x. [DOI] [PubMed] [Google Scholar]
  18. Lee I. S., Lin J., Hall H. K., Bearson B., Foster J. W. The stationary-phase sigma factor sigma S (RpoS) is required for a sustained acid tolerance response in virulent Salmonella typhimurium. Mol Microbiol. 1995 Jul;17(1):155–167. doi: 10.1111/j.1365-2958.1995.mmi_17010155.x. [DOI] [PubMed] [Google Scholar]
  19. Leyer G. J., Wang L. L., Johnson E. A. Acid adaptation of Escherichia coli O157:H7 increases survival in acidic foods. Appl Environ Microbiol. 1995 Oct;61(10):3752–3755. doi: 10.1128/aem.61.10.3752-3755.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lin J., Lee I. S., Frey J., Slonczewski J. L., Foster J. W. Comparative analysis of extreme acid survival in Salmonella typhimurium, Shigella flexneri, and Escherichia coli. J Bacteriol. 1995 Jul;177(14):4097–4104. doi: 10.1128/jb.177.14.4097-4104.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Loewen P. C., Hengge-Aronis R. The role of the sigma factor sigma S (KatF) in bacterial global regulation. Annu Rev Microbiol. 1994;48:53–80. doi: 10.1146/annurev.mi.48.100194.000413. [DOI] [PubMed] [Google Scholar]
  22. McCann M. P., Kidwell J. P., Matin A. The putative sigma factor KatF has a central role in development of starvation-mediated general resistance in Escherichia coli. J Bacteriol. 1991 Jul;173(13):4188–4194. doi: 10.1128/jb.173.13.4188-4194.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Nguyen L. H., Jensen D. B., Thompson N. E., Gentry D. R., Burgess R. R. In vitro functional characterization of overproduced Escherichia coli katF/rpoS gene product. Biochemistry. 1993 Oct 19;32(41):11112–11117. doi: 10.1021/bi00092a021. [DOI] [PubMed] [Google Scholar]
  24. Park Y. K., Bearson B., Bang S. H., Bang I. S., Foster J. W. Internal pH crisis, lysine decarboxylase and the acid tolerance response of Salmonella typhimurium. Mol Microbiol. 1996 May;20(3):605–611. doi: 10.1046/j.1365-2958.1996.5441070.x. [DOI] [PubMed] [Google Scholar]
  25. Peterson W. L., Mackowiak P. A., Barnett C. C., Marling-Cason M., Haley M. L. The human gastric bactericidal barrier: mechanisms of action, relative antibacterial activity, and dietary influences. J Infect Dis. 1989 May;159(5):979–983. doi: 10.1093/infdis/159.5.979. [DOI] [PubMed] [Google Scholar]
  26. Salmond C. V., Kroll R. G., Booth I. R. The effect of food preservatives on pH homeostasis in Escherichia coli. J Gen Microbiol. 1984 Nov;130(11):2845–2850. doi: 10.1099/00221287-130-11-2845. [DOI] [PubMed] [Google Scholar]
  27. Shi X., Bennett G. N. Effects of rpoA and cysB mutations on acid induction of biodegradative arginine decarboxylase in Escherichia coli. J Bacteriol. 1994 Nov;176(22):7017–7023. doi: 10.1128/jb.176.22.7017-7023.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Small P., Blankenhorn D., Welty D., Zinser E., Slonczewski J. L. Acid and base resistance in Escherichia coli and Shigella flexneri: role of rpoS and growth pH. J Bacteriol. 1994 Mar;176(6):1729–1737. doi: 10.1128/jb.176.6.1729-1737.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Stim-Herndon K. P., Flores T. M., Bennett G. N. Molecular characterization of adiY, a regulatory gene which affects expression of the biodegradative acid-induced arginine decarboxylase gene (adiA) of Escherichia coli. Microbiology. 1996 May;142(Pt 5):1311–1320. doi: 10.1099/13500872-142-5-1311. [DOI] [PubMed] [Google Scholar]
  30. VOGEL H. J., BONNER D. M. Acetylornithinase of Escherichia coli: partial purification and some properties. J Biol Chem. 1956 Jan;218(1):97–106. [PubMed] [Google Scholar]
  31. Van Netten P., Huis in 't Veld J. H., Mossel D. A. The immediate bactericidal effect of lactic acid on meat-borne pathogens. J Appl Bacteriol. 1994 Nov;77(5):490–496. doi: 10.1111/j.1365-2672.1994.tb04392.x. [DOI] [PubMed] [Google Scholar]
  32. van Netten P., Huis in 't Veld J., Mossel D. A. An in-vitro meat model for the immediate bactericidal effect of lactic acid decontamination on meat surfaces. J Appl Bacteriol. 1994 Jan;76(1):49–54. doi: 10.1111/j.1365-2672.1994.tb04414.x. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES