Abstract
Genetic relationships among 25 isolates of Xanthomonas fragariae from diverse geographic regions were determined by three PCR methods that rely on different amplification priming strategies: random amplified polymorphic DNA (RAPD) PCR, repetitive extragenic palindromic (REP) PCR, and enterobacterial repetitive intergenic consensus (ERIC) PCR. The results of these assays are mutually consistent and indicate that pathogenic strains are very closely related to each other. RAPD, ERIC, and REP PCR assays identified nine, four, and two genotypes, respectively, within X. fragariae isolates. A single nonpathogenic isolate of X. fragariae was not distinguishable by these methods. The results of the PCR assays were also fully confirmed by physiological tests. There was no correlation between DNA amplification product patterns and geographic sites of isolation, suggesting that this bacterium has spread largely through exchange of infected plant germ plasm. Sequences identified through the RAPD assays were used to develop three primer pairs for standard PCR assays to identify X. fragariae. In addition, we developed a stringent multiplexed PCR assay to identify X. fragariae by simultaneously using the three independently derived sets of primers specific for pathogenic strains of the bacteria.
Full Text
The Full Text of this article is available as a PDF (816.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Akopyanz N., Bukanov N. O., Westblom T. U., Kresovich S., Berg D. E. DNA diversity among clinical isolates of Helicobacter pylori detected by PCR-based RAPD fingerprinting. Nucleic Acids Res. 1992 Oct 11;20(19):5137–5142. doi: 10.1093/nar/20.19.5137. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barry T., Colleran G., Glennon M., Dunican L. K., Gannon F. The 16s/23s ribosomal spacer region as a target for DNA probes to identify eubacteria. PCR Methods Appl. 1991 Aug;1(1):51–56. doi: 10.1101/gr.1.1.51. [DOI] [PubMed] [Google Scholar]
- Crowhurst R. N., Hawthorne B. T., Rikkerink E. H., Templeton M. D. Differentiation of Fusarium solani f. sp. cucurbitae races 1 and 2 by random amplification of polymorphic DNA. Curr Genet. 1991 Nov;20(5):391–396. doi: 10.1007/BF00317067. [DOI] [PubMed] [Google Scholar]
- Hulton C. S., Higgins C. F., Sharp P. M. ERIC sequences: a novel family of repetitive elements in the genomes of Escherichia coli, Salmonella typhimurium and other enterobacteria. Mol Microbiol. 1991 Apr;5(4):825–834. doi: 10.1111/j.1365-2958.1991.tb00755.x. [DOI] [PubMed] [Google Scholar]
- Jacobsen C. S. Microscale detection of specific bacterial DNA in soil with a magnetic capture-hybridization and PCR amplification assay. Appl Environ Microbiol. 1995 Sep;61(9):3347–3352. doi: 10.1128/aem.61.9.3347-3352.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lawrence L. M., Harvey J., Gilmour A. Development of a random amplification of polymorphic DNA typing method for Listeria monocytogenes. Appl Environ Microbiol. 1993 Sep;59(9):3117–3119. doi: 10.1128/aem.59.9.3117-3119.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Louws F. J., Fulbright D. W., Stephens C. T., de Bruijn F. J. Specific genomic fingerprints of phytopathogenic Xanthomonas and Pseudomonas pathovars and strains generated with repetitive sequences and PCR. Appl Environ Microbiol. 1994 Jul;60(7):2286–2295. doi: 10.1128/aem.60.7.2286-2295.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Manulis S., Valinsky L., Lichter A., Gabriel D. W. Sensitive and specific detection of Xanthomonas campestris pv. pelargonii with DNA primers and probes identified by random amplified polymorphic DNA analysis. Appl Environ Microbiol. 1994 Nov;60(11):4094–4099. doi: 10.1128/aem.60.11.4094-4099.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pooler M. R., Hartung J. S. Genetic relationships among strains of Xylella fastidiosa from RAPD-PCR data. Curr Microbiol. 1995 Aug;31(2):134–137. doi: 10.1007/BF00294290. [DOI] [PubMed] [Google Scholar]
- Pooler M. R., Hartung J. S. Specific PCR detection and identification of Xylella fastidiosa strains causing citrus variegated chlorosis. Curr Microbiol. 1995 Dec;31(6):377–381. doi: 10.1007/BF00294703. [DOI] [PubMed] [Google Scholar]
- Stern M. J., Ames G. F., Smith N. H., Robinson E. C., Higgins C. F. Repetitive extragenic palindromic sequences: a major component of the bacterial genome. Cell. 1984 Jul;37(3):1015–1026. doi: 10.1016/0092-8674(84)90436-7. [DOI] [PubMed] [Google Scholar]
- Versalovic J., Koeuth T., Lupski J. R. Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res. 1991 Dec 25;19(24):6823–6831. doi: 10.1093/nar/19.24.6823. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Williams J. G., Kubelik A. R., Livak K. J., Rafalski J. A., Tingey S. V. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 1990 Nov 25;18(22):6531–6535. doi: 10.1093/nar/18.22.6531. [DOI] [PMC free article] [PubMed] [Google Scholar]
- de Bruijn F. J. Use of repetitive (repetitive extragenic palindromic and enterobacterial repetitive intergeneric consensus) sequences and the polymerase chain reaction to fingerprint the genomes of Rhizobium meliloti isolates and other soil bacteria. Appl Environ Microbiol. 1992 Jul;58(7):2180–2187. doi: 10.1128/aem.58.7.2180-2187.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]