Abstract
Genotypic and phenotypic assays for glutamate decarboxylase (GAD) and beta-D-glucuronidase (GUD) were compared for their abilities to detect various strains of Escherichia coli and to discriminate among other bacterial species. Test strains included nonpathogenic E. coli, three major groups of diarrheagenic E. coli, three other non-coli Escherichia species, and various other gram-negative and -positive bacteria found in water. The genotypic assays were performed with hybridization probes generated by PCR amplification of 670- and 623-bp segments of the gadA/B (GAD) and uidA (GUD) genes, respectively. The GAD enzymes catalyze the alpha-decarboxylation of L-glutamic acid to yield gamma-aminobutyric acid and carbon dioxide, which are detected in the phenotypic assay by a pH-sensitive indicator dye. The phenotypic assay for GUD involves the transformation of 4-methylumbelliferyl-beta-D-glucuronide to the fluorogenic compound 4-methylumbelliferone. The GAD phenotypic assay detected the majority of the E. coli strains tested, whereas a number of these strains, including all representatives of the O157:H7 serotype and several nonpathogenic E. coli strains, gave negative results in the GUD assay. Both phenotypic assays detected some but not all strains from each of the four Shigella species. A strain of Citrobacter freundii was also detected by the GUD assay but not by the GAD assay. All E. coli and Shigella strains were detected with both the gadA/B and uidA probes. A few Escherichia fergusonii strains gave weak hybridization signals in response to both probes at 65 degrees C but not at 68 degrees C. None of the other bacterial species tested were detected by either probe. These results were consistent with previous reports which have indicated that the GAD phenotypic assay detects a wider range of E. coli strains than does the GUD assay and is also somewhat more specific for this species. The genotypic assays for the two enzymes were found to be equivalent in both of these respects and superior to both of the phenotypic assays in terms of the range of E. coli strains and isolates detected.
Full Text
The Full Text of this article is available as a PDF (706.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bej A. K., McCarty S. C., Atlas R. M. Detection of coliform bacteria and Escherichia coli by multiplex polymerase chain reaction: comparison with defined substrate and plating methods for water quality monitoring. Appl Environ Microbiol. 1991 Aug;57(8):2429–2432. doi: 10.1128/aem.57.8.2429-2432.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cleuziat P., Robert-Baudouy J. Specific detection of Escherichia coli and Shigella species using fragments of genes coding for beta-glucuronidase. FEMS Microbiol Lett. 1990 Nov;60(3):315–322. doi: 10.1016/0378-1097(90)90324-j. [DOI] [PubMed] [Google Scholar]
- Edberg S. C., Allen M. J., Smith D. B. National field evaluation of a defined substrate method for the simultaneous detection of total coliforms and Escherichia coli from drinking water: comparison with presence-absence techniques. Appl Environ Microbiol. 1989 Apr;55(4):1003–1008. doi: 10.1128/aem.55.4.1003-1008.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Feng P., Lampel K. A. Genetic analysis of uidA expression in enterohaemorrhagic Escherichia coli serotype O157:H7. Microbiology. 1994 Aug;140(Pt 8):2101–2107. doi: 10.1099/13500872-140-8-2101. [DOI] [PubMed] [Google Scholar]
- Feng P., Lum R., Chang G. W. Identification of uidA gene sequences in beta-D-glucuronidase-negative Escherichia coli. Appl Environ Microbiol. 1991 Jan;57(1):320–323. doi: 10.1128/aem.57.1.320-323.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fiedler J., Eiske J. R. Glutaminsäuredecarboxylase-Schnelltest zur Identifikation von Escherichia coli. Z Gesamte Hyg. 1990 Nov;36(11):620–622. [PubMed] [Google Scholar]
- Frampton E. W., Restaino L. Methods for Escherichia coli identification in food, water and clinical samples based on beta-glucuronidase detection. J Appl Bacteriol. 1993 Mar;74(3):223–233. doi: 10.1111/j.1365-2672.1993.tb03019.x. [DOI] [PubMed] [Google Scholar]
- Freier P. A., Graves M. H., Kocka F. E. A rapid glutamic decarboxylase test for identification of bacteria. Ann Clin Lab Sci. 1976 Nov-Dec;6(6):537–539. [PubMed] [Google Scholar]
- Fricker E. J., Fricker C. R. Application of the polymerase chain reaction to the identification of Escherichia coli and coliforms in water. Lett Appl Microbiol. 1994 Jul;19(1):44–46. doi: 10.1111/j.1472-765x.1994.tb00900.x. [DOI] [PubMed] [Google Scholar]
- Hayes P. S., Blom K., Feng P., Lewis J., Strockbine N. A., Swaminathan B. Isolation and characterization of a beta-D-glucuronidase-producing strain of Escherichia coli serotype O157:H7 in the United States. J Clin Microbiol. 1995 Dec;33(12):3347–3348. doi: 10.1128/jcm.33.12.3347-3348.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jefferson R. A., Burgess S. M., Hirsh D. beta-Glucuronidase from Escherichia coli as a gene-fusion marker. Proc Natl Acad Sci U S A. 1986 Nov;83(22):8447–8451. doi: 10.1073/pnas.83.22.8447. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kreader C. A. Design and evaluation of Bacteroides DNA probes for the specific detection of human fecal pollution. Appl Environ Microbiol. 1995 Apr;61(4):1171–1179. doi: 10.1128/aem.61.4.1171-1179.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lupo M., Halpern Y. S. Gene controlling L-glutamic acid decarboxylase synthesis in Escherichia coli K-12. J Bacteriol. 1970 Aug;103(2):382–386. doi: 10.1128/jb.103.2.382-386.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Manafi M., Kneifel W., Bascomb S. Fluorogenic and chromogenic substrates used in bacterial diagnostics. Microbiol Rev. 1991 Sep;55(3):335–348. doi: 10.1128/mr.55.3.335-348.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Martins M. T., Rivera I. G., Clark D. L., Stewart M. H., Wolfe R. L., Olson B. H. Distribution of uidA gene sequences in Escherichia coli isolates in water sources and comparison with the expression of beta-glucuronidase activity in 4-methylumbelliferyl-beta-D-glucuronide media. Appl Environ Microbiol. 1993 Jul;59(7):2271–2276. doi: 10.1128/aem.59.7.2271-2276.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rice E. W., Johnson C. H., Dunnigan M. E., Reasoner D. J. Rapid glutamate decarboxylase assay for detection of Escherichia coli. Appl Environ Microbiol. 1993 Dec;59(12):4347–4349. doi: 10.1128/aem.59.12.4347-4349.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schubert R., Esanu J. G., Schäfer V. Der Glutaminsäuredecarboxylase-Plättchen-Test. Ein Ansatz zur Vereinfachung und Beschleunigung des E. coli-Nachweises. Zentralbl Bakteriol Mikrobiol Hyg B. 1988 Dec;187(2):107–111. [PubMed] [Google Scholar]
- Sethabutr O., Venkatesan M., Murphy G. S., Eampokalap B., Hoge C. W., Echeverria P. Detection of Shigellae and enteroinvasive Escherichia coli by amplification of the invasion plasmid antigen H DNA sequence in patients with dysentery. J Infect Dis. 1993 Feb;167(2):458–461. doi: 10.1093/infdis/167.2.458. [DOI] [PubMed] [Google Scholar]
- Smith D. K., Kassam T., Singh B., Elliott J. F. Escherichia coli has two homologous glutamate decarboxylase genes that map to distinct loci. J Bacteriol. 1992 Sep;174(18):5820–5826. doi: 10.1128/jb.174.18.5820-5826.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spierings G., Ockhuijsen C., Hofstra H., Tommassen J. Polymerase chain reaction for the specific detection of Escherichia coli/Shigella. Res Microbiol. 1993 Sep;144(7):557–564. doi: 10.1016/0923-2508(93)90005-m. [DOI] [PubMed] [Google Scholar]
- Wauters G., Cornelis G. Méthode simple pour la recherche de la décarboxylation de l'acide glutamique chez les bactéries à gram négatif. Ann Microbiol (Paris) 1974 Feb-Mar;125A(2):183–192. [PubMed] [Google Scholar]