Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1996 Sep;62(9):3399–3404. doi: 10.1128/aem.62.9.3399-3404.1996

Characterization of experimentally induced, nonaflatoxigenic variant strains of Aspergillus parasiticus.

S P Kale 1, J W Cary 1, D Bhatnagar 1, J W Bennett 1
PMCID: PMC168138  PMID: 8795232

Abstract

Six previously isolated, nonaflatoxigenic variants of Aspergillus parasiticus, designated sec mutants, were characterized morphologically by electron microscopy, biochemically by biotransformation studies with an aflatoxin precursor, and genetically by Northern (RNA) hybridization analysis of aflatoxin biosynthetic gene transcripts. Scanning electron micrographs clearly demonstrated that compared with the parental sec+ forms, the variant sec forms had an abundance of vegetative mycelia, orders of magnitude reduced number of conidiophores and conidia, and abnormal metulae. Conidiospores were detected in sec cultures only at higher magnifications (x 500), in contrast to the sec+ (wild-type) strain, in which abundant conidiospores (masking the vegetative mycelia) were observed at even lower magnifications (x 300). All sec+ forms, but none of the sec forms, showed bioconversion of sterigmatocystin to aflatoxins. Northern blots probed with pathway genes demonstrated lack of expression of both the aflatoxin biosynthetic pathway structural (nor-1 and omtA) and regulatory (aflR) genes in the sec forms; PCR and Southern hybridization analysis confirmed the presence of the genes in the sec genomes. Thus, the loss of aflatoxigenic capabilities in the sec form is correlated with alterations in the conidial morphology of the fungus, suggesting that the regulation of aflatoxin synthesis and conidiogenesis may be interlinked.

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ADYE J., MATELES R. I. INCORPORATION OF LABELLED COMPOUNDS INTO AFLATOXINS. Biochim Biophys Acta. 1964 May 11;86:418–420. doi: 10.1016/0304-4165(64)90077-7. [DOI] [PubMed] [Google Scholar]
  2. Bennett J. W. Aflatoxins and anthraquinones from diploids of Aspergillus parasiticus. J Gen Microbiol. 1979 Jul;113(1):127–136. doi: 10.1099/00221287-113-1-127. [DOI] [PubMed] [Google Scholar]
  3. Bennett J. W., Christensen S. B. New perspectives on aflatoxin biosynthesis. Adv Appl Microbiol. 1983;29:53–92. doi: 10.1016/s0065-2164(08)70354-x. [DOI] [PubMed] [Google Scholar]
  4. Chang P. K., Cary J. W., Bhatnagar D., Cleveland T. E., Bennett J. W., Linz J. E., Woloshuk C. P., Payne G. A. Cloning of the Aspergillus parasiticus apa-2 gene associated with the regulation of aflatoxin biosynthesis. Appl Environ Microbiol. 1993 Oct;59(10):3273–3279. doi: 10.1128/aem.59.10.3273-3279.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chang P. K., Ehrlich K. C., Yu J., Bhatnagar D., Cleveland T. E. Increased expression of Aspergillus parasiticus aflR, encoding a sequence-specific DNA-binding protein, relieves nitrate inhibition of aflatoxin biosynthesis. Appl Environ Microbiol. 1995 Jun;61(6):2372–2377. doi: 10.1128/aem.61.6.2372-2377.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cotty P. J., Bhatnagar D. Variability among atoxigenic Aspergillus flavus strains in ability to prevent aflatoxin contamination and production of aflatoxin biosynthetic pathway enzymes. Appl Environ Microbiol. 1994 Jul;60(7):2248–2251. doi: 10.1128/aem.60.7.2248-2251.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Henderberg A., Bennett J. W., Lee L. S. Biosynthetic origin of aflatoxin G1: confirmation of sterigmatocystin and lack of confirmation of aflatoxin B1 as precursors. J Gen Microbiol. 1988 Mar;134(3):661–667. doi: 10.1099/00221287-134-3-661. [DOI] [PubMed] [Google Scholar]
  8. Lee L. S. Metabolic precursor regulation of aflatoxin formation in toxigenic and non-toxigenic strains of Aspergillus flavus. Mycopathologia. 1989 Sep;107(2-3):127–130. doi: 10.1007/BF00707549. [DOI] [PubMed] [Google Scholar]
  9. Li A., Begin M., Kokurewicz K., Bowden C., Horgen P. A. Inheritance of Strain Instability (Sectoring) in the Commercial Button Mushroom, Agaricus bisporus. Appl Environ Microbiol. 1994 Jul;60(7):2384–2388. doi: 10.1128/aem.60.7.2384-2388.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Lindroth M., Bell P. B., Jr, Fredriksson B. A. Comparison of the effects of critical point-drying and freeze-drying on cytoskeletons and microtubules. J Microsc. 1988 Aug;151(Pt 2):103–114. doi: 10.1111/j.1365-2818.1988.tb04617.x. [DOI] [PubMed] [Google Scholar]
  11. Muramatsu M. Preparation of RNA from animal cells. Methods Cell Biol. 1973;7:23–51. doi: 10.1016/s0091-679x(08)61770-7. [DOI] [PubMed] [Google Scholar]
  12. Prade R. A., Timberlake W. E. The Aspergillus nidulans brlA regulatory locus consists of overlapping transcription units that are individually required for conidiophore development. EMBO J. 1993 Jun;12(6):2439–2447. doi: 10.1002/j.1460-2075.1993.tb05898.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Timberlake W. E. Molecular genetics of Aspergillus development. Annu Rev Genet. 1990;24:5–36. doi: 10.1146/annurev.ge.24.120190.000253. [DOI] [PubMed] [Google Scholar]
  14. Trail F., Chang P. K., Cary J., Linz J. E. Structural and functional analysis of the nor-1 gene involved in the biosynthesis of aflatoxins by Aspergillus parasiticus. Appl Environ Microbiol. 1994 Nov;60(11):4078–4085. doi: 10.1128/aem.60.11.4078-4085.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Woloshuk C. P., Foutz K. R., Brewer J. F., Bhatnagar D., Cleveland T. E., Payne G. A. Molecular characterization of aflR, a regulatory locus for aflatoxin biosynthesis. Appl Environ Microbiol. 1994 Jul;60(7):2408–2414. doi: 10.1128/aem.60.7.2408-2414.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Yu J., Cary J. W., Bhatnagar D., Cleveland T. E., Keller N. P., Chu F. S. Cloning and characterization of a cDNA from Aspergillus parasiticus encoding an O-methyltransferase involved in aflatoxin biosynthesis. Appl Environ Microbiol. 1993 Nov;59(11):3564–3571. doi: 10.1128/aem.59.11.3564-3571.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES