Abstract
The presence of bacteria in a deep clay sediment was analyzed in a 20-m-long core horizontally drilled from a mine gallery at a depth of 224 m in the Boom clay formation (Mol, Belgium). This clay deposit is the result of a marine sedimentary process that occurred 35 million years ago. Bacterial activities were estimated by measuring respiration on [14C]glucose. Using the same samples, universal primers for the genes coding for eubacterial 16S rRNA were used to amplify extracted DNA. PCR products were then cloned, sequenced, and analyzed by molecular phylogeny. Our data showed a decrease in bacterial densities as a function of distance from the gallery, with few bacteria detectable by culture at more than 80 cm from the gallery wall. PCR experiments showed the presence of bacteria in all samples, and phylogenetic analyses were then used to tentatively identify these organisms. Because of low bacterial densities in deep clay samples, direct counts and enumeration of viable bacteria on diverse culture media remained negative. All experiments, both cultures and PCR, demonstrated the difficulty of analyzing samples that contain only a few poorly active bacteria as it is difficult to avoid a small contamination by active bacteria during sampling. Since the porosity of the Boom clay formation is less than the expected size of bacteria, it is possible that some of the bacteria present in this 35-million-year-old deep clay deposit derive from cells initially trapped during the sedimentation process.
Full Text
The Full Text of this article is available as a PDF (292.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anders H. J., Kaetzke A., Kämpfer P., Ludwig W., Fuchs G. Taxonomic position of aromatic-degrading denitrifying pseudomonad strains K 172 and KB 740 and their description as new members of the genera Thauera, as Thauera aromatica sp. nov., and Azoarcus, as Azoarcus evansii sp. nov., respectively, members of the beta subclass of the Proteobacteria. Int J Syst Bacteriol. 1995 Apr;45(2):327–333. doi: 10.1099/00207713-45-2-327. [DOI] [PubMed] [Google Scholar]
- Armbruster E. H. Improved technique for isolation and identification of Sphaerotilus. Appl Microbiol. 1969 Feb;17(2):320–321. doi: 10.1128/am.17.2.320-321.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Balkwill D. L., Fredrickson J. K., Thomas J. M. Vertical and horizontal variations in the physiological diversity of the aerobic chemoheterotrophic bacterial microflora in deep southeast coastal plain subsurface sediments. Appl Environ Microbiol. 1989 May;55(5):1058–1065. doi: 10.1128/aem.55.5.1058-1065.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barns S. M., Fundyga R. E., Jeffries M. W., Pace N. R. Remarkable archaeal diversity detected in a Yellowstone National Park hot spring environment. Proc Natl Acad Sci U S A. 1994 Mar 1;91(5):1609–1613. doi: 10.1073/pnas.91.5.1609. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bianchi A., Giuliano L. Enumeration of viable bacteria in the marine pelagic environment. Appl Environ Microbiol. 1996 Jan;62(1):174–177. doi: 10.1128/aem.62.1.174-177.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boivin-Jahns V., Bianchi A., Ruimy R., Garcin J., Daumas S., Christen R. Comparison of phenotypical and molecular methods for the identification of bacterial strains isolated from a deep subsurface environment. Appl Environ Microbiol. 1995 Sep;61(9):3400–3406. doi: 10.1128/aem.61.9.3400-3406.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chapelle F. H., Lovley D. R. Rates of microbial metabolism in deep coastal plain aquifers. Appl Environ Microbiol. 1990 Jun;56(6):1865–1874. doi: 10.1128/aem.56.6.1865-1874.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cilia V., Lafay B., Christen R. Sequence heterogeneities among 16S ribosomal RNA sequences, and their effect on phylogenetic analyses at the species level. Mol Biol Evol. 1996 Mar;13(3):451–461. doi: 10.1093/oxfordjournals.molbev.a025606. [DOI] [PubMed] [Google Scholar]
- Devereux R., Mundfrom G. W. A phylogenetic tree of 16S rRNA sequences from sulfate-reducing bacteria in a sandy marine sediment. Appl Environ Microbiol. 1994 Sep;60(9):3437–3439. doi: 10.1128/aem.60.9.3437-3439.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ecological implications of transgenic plant release. Mol Ecol. 1994 Feb;3(1):1–89. [PubMed] [Google Scholar]
- Ekendahl S., Arlinger J., Ståhl F., Pedersen K. Characterization of attached bacterial populations in deep granitic groundwater from the Stripa research mine by 16S rRNA gene sequencing and scanning electron microscopy. Microbiology. 1994 Jul;140(Pt 7):1575–1583. doi: 10.1099/13500872-140-7-1575. [DOI] [PubMed] [Google Scholar]
- Ekendahl S., Pedersen K. Carbon transformations by attached bacterial populations in granitic groundwater from deep crystalline bed-rock of the Stripa research mine. Microbiology. 1994 Jul;140(Pt 7):1565–1573. doi: 10.1099/13500872-140-7-1565. [DOI] [PubMed] [Google Scholar]
- Farrelly V., Rainey F. A., Stackebrandt E. Effect of genome size and rrn gene copy number on PCR amplification of 16S rRNA genes from a mixture of bacterial species. Appl Environ Microbiol. 1995 Jul;61(7):2798–2801. doi: 10.1128/aem.61.7.2798-2801.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fuhrman J. A., McCallum K., Davis A. A. Phylogenetic diversity of subsurface marine microbial communities from the Atlantic and Pacific Oceans. Appl Environ Microbiol. 1993 May;59(5):1294–1302. doi: 10.1128/aem.59.5.1294-1302.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Giovannoni S. J., Britschgi T. B., Moyer C. L., Field K. G. Genetic diversity in Sargasso Sea bacterioplankton. Nature. 1990 May 3;345(6270):60–63. doi: 10.1038/345060a0. [DOI] [PubMed] [Google Scholar]
- Hobbie J. E., Daley R. J., Jasper S. Use of nuclepore filters for counting bacteria by fluorescence microscopy. Appl Environ Microbiol. 1977 May;33(5):1225–1228. doi: 10.1128/aem.33.5.1225-1228.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hurek T., Burggraf S., Woese C. R., Reinhold-Hurek B. 16S rRNA-targeted polymerase chain reaction and oligonucleotide hybridization to screen for Azoarcus spp., grass-associated diazotrophs. Appl Environ Microbiol. 1993 Nov;59(11):3816–3824. doi: 10.1128/aem.59.11.3816-3824.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jacobsen C. S., Rasmussen O. F. Development and application of a new method to extract bacterial DNA from soil based on separation of bacteria from soil with cation-exchange resin. Appl Environ Microbiol. 1992 Aug;58(8):2458–2462. doi: 10.1128/aem.58.8.2458-2462.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KUCERA S., WOLFE R. S. A selective enrichment method for Gallionella ferruginea. J Bacteriol. 1957 Sep;74(3):344–349. doi: 10.1128/jb.74.3.344-349.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leff L. G., Dana J. R., McArthur J. V., Shimkets L. J. Comparison of methods of DNA extraction from stream sediments. Appl Environ Microbiol. 1995 Mar;61(3):1141–1143. doi: 10.1128/aem.61.3.1141-1143.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liesack W., Stackebrandt E. Occurrence of novel groups of the domain Bacteria as revealed by analysis of genetic material isolated from an Australian terrestrial environment. J Bacteriol. 1992 Aug;174(15):5072–5078. doi: 10.1128/jb.174.15.5072-5078.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MULDER E. G., VAN VEENW INVESTIGATIONS ON THE SPHAEROTILUSLEPTOTHRIX GROUP. Antonie Van Leeuwenhoek. 1963;29:121–153. doi: 10.1007/BF02046045. [DOI] [PubMed] [Google Scholar]
- McInerney J. O., Wilkinson M., Patching J. W., Embley T. M., Powell R. Recovery and phylogenetic analysis of novel archaeal rRNA sequences from a deep-sea deposit feeder. Appl Environ Microbiol. 1995 Apr;61(4):1646–1648. doi: 10.1128/aem.61.4.1646-1648.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moran M. A., Rutherford L. T., Hodson R. E. Evidence for indigenous Streptomyces populations in a marine environment determined with a 16S rRNA probe. Appl Environ Microbiol. 1995 Oct;61(10):3695–3700. doi: 10.1128/aem.61.10.3695-3700.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moyer C. L., Dobbs F. C., Karl D. M. Phylogenetic diversity of the bacterial community from a microbial mat at an active, hydrothermal vent system, Loihi Seamount, Hawaii. Appl Environ Microbiol. 1995 Apr;61(4):1555–1562. doi: 10.1128/aem.61.4.1555-1562.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ruimy R., Breittmayer V., Elbaze P., Lafay B., Boussemart O., Gauthier M., Christen R. Phylogenetic analysis and assessment of the genera Vibrio, Photobacterium, Aeromonas, and Plesiomonas deduced from small-subunit rRNA sequences. Int J Syst Bacteriol. 1994 Jul;44(3):416–426. doi: 10.1099/00207713-44-3-416. [DOI] [PubMed] [Google Scholar]
- Saitou N., Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987 Jul;4(4):406–425. doi: 10.1093/oxfordjournals.molbev.a040454. [DOI] [PubMed] [Google Scholar]
- Schmidt T. M., DeLong E. F., Pace N. R. Analysis of a marine picoplankton community by 16S rRNA gene cloning and sequencing. J Bacteriol. 1991 Jul;173(14):4371–4378. doi: 10.1128/jb.173.14.4371-4378.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith A. B., Lafay B., Christen R. Comparative variation of morphological and molecular evolution through geologic time: 28S ribosomal RNA versus morphology in echinoids. Philos Trans R Soc Lond B Biol Sci. 1992 Dec 29;338(1286):365–382. doi: 10.1098/rstb.1992.0155. [DOI] [PubMed] [Google Scholar]
- Sneath P. H. Evidence from Aeromonas for genetic crossing-over in ribosomal sequences. Int J Syst Bacteriol. 1993 Jul;43(3):626–629. doi: 10.1099/00207713-43-3-626. [DOI] [PubMed] [Google Scholar]
- Steffan R. J., Goksøyr J., Bej A. K., Atlas R. M. Recovery of DNA from soils and sediments. Appl Environ Microbiol. 1988 Dec;54(12):2908–2915. doi: 10.1128/aem.54.12.2908-2915.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taylor B. F., Hoare D. S., Hoare S. L. Thiobacillus denitrificans as an obligate chemolithotroph. Isolation and growth studies. Arch Mikrobiol. 1971;78(3):193–204. doi: 10.1007/BF00424893. [DOI] [PubMed] [Google Scholar]
- Tsai Y. L., Olson B. H. Rapid method for direct extraction of DNA from soil and sediments. Appl Environ Microbiol. 1991 Apr;57(4):1070–1074. doi: 10.1128/aem.57.4.1070-1074.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Waksman S. A., Joffe J. S. Microörganisms Concerned in the Oxidation of Sulfur in the Soil: II. Thiobacillus Thiooxidans, a New Sulfur-oxidizing Organism Isolated from the Soil. J Bacteriol. 1922 Mar;7(2):239–256. doi: 10.1128/jb.7.2.239-256.1922. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ward D. M., Weller R., Bateson M. M. 16S rRNA sequences reveal numerous uncultured microorganisms in a natural community. Nature. 1990 May 3;345(6270):63–65. doi: 10.1038/345063a0. [DOI] [PubMed] [Google Scholar]
- Watson S. W., Graham L. B., Remsen C. C., Valois F. W. A lobular, ammonia-oxidizing bacterium, Nitrosolobus multiformis nov.gen.nov.sp. Arch Mikrobiol. 1971;76(3):183–203. doi: 10.1007/BF00409115. [DOI] [PubMed] [Google Scholar]
- Young C. C., Burghoff R. L., Keim L. G., Minak-Bernero V., Lute J. R., Hinton S. M. Polyvinylpyrrolidone-agarose gel electrophoresis purification of polymerase chain reaction-amplifiable DNA from soils. Appl Environ Microbiol. 1993 Jun;59(6):1972–1974. doi: 10.1128/aem.59.6.1972-1974.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]