Abstract
A conventional method and a fluorogenic assay for the detection of Vibrio parahaemolyticus were compared. Among 29 seafood samples examined for the presence of V. parahaemolyticus, 17 samples harbored V. parahaemolyticus, and trypsinlike activity was noticed in 19 seafoods. The added fluorogenic substrate was cleaved in single samples of shrimp, turbo, and cuttlefish from which V. parahaemolyticus could not be isolated by the conventional method. Vibrio alginolyticus, in addition to V. parahaemolyticus, was found to exhibit intracellular trypsinlike activity. Trypsinlike activity in seafoods was observed after the most probable number for the initial density of V. parahaemolyticus-like organisms was found to have reached > 10(2) per g. A V. parahaemolyticus inoculum at 10(4) CFU/ml in arabinose-glucuronate medium was required to attain growth to 10(6) CFU/ml, which is the level necessary for the release of detectable amounts of fluorescent compound from the added substrate.
Full Text
The Full Text of this article is available as a PDF (173.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Honda T., Ni Y. X., Miwatani T. Purification and characterization of a hemolysin produced by a clinical isolate of Kanagawa phenomenon-negative Vibrio parahaemolyticus and related to the thermostable direct hemolysin. Infect Immun. 1988 Apr;56(4):961–965. doi: 10.1128/iai.56.4.961-965.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Joseph S. W., Colwell R. R., Kaper J. B. Vibrio parahaemolyticus and related halophilic Vibrios. Crit Rev Microbiol. 1982;10(1):77–124. doi: 10.3109/10408418209113506. [DOI] [PubMed] [Google Scholar]
- Miyamoto T., Miwa H., Hatano S. Improved fluorogenic assay for rapid detection of Vibrio parahaemolyticus in foods. Appl Environ Microbiol. 1990 May;56(5):1480–1484. doi: 10.1128/aem.56.5.1480-1484.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miyamoto Y., Obara Y., Nikkawa T., Yamai S., Kato T., Yamada Y., Ohashi M. Simplified purification and biophysicochemical characteristics of Kanagawa phenomenon-associated hemolysin of Vibrio parahaemolyticus. Infect Immun. 1980 May;28(2):567–576. doi: 10.1128/iai.28.2.567-576.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nishibuchi M., Ishibashi M., Takeda Y., Kaper J. B. Detection of the thermostable direct hemolysin gene and related DNA sequences in Vibrio parahaemolyticus and other vibrio species by the DNA colony hybridization test. Infect Immun. 1985 Sep;49(3):481–486. doi: 10.1128/iai.49.3.481-486.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nishibuchi M., Kaper J. B. Nucleotide sequence of the thermostable direct hemolysin gene of Vibrio parahaemolyticus. J Bacteriol. 1985 May;162(2):558–564. doi: 10.1128/jb.162.2.558-564.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Venkateswaran K., Murakoshi A., Satake M. Comparison of commercially available kits with standard methods for the detection of coliforms and Escherichia coli in foods. Appl Environ Microbiol. 1996 Jul;62(7):2236–2243. doi: 10.1128/aem.62.7.2236-2243.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Venkateswaran K., Nakano H., Okabe T., Takayama K., Matsuda O., Hashimoto H. Occurrence and distribution of Vibrio spp., Listonella spp., and Clostridium botulinum in the Seto Inland Sea of Japan. Appl Environ Microbiol. 1989 Mar;55(3):559–567. doi: 10.1128/aem.55.3.559-567.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
