Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1996 Sep;62(9):3538–3540. doi: 10.1128/aem.62.9.3538-3540.1996

Increased mutagenesis mediated by cloned plasmid CAM-OCT genes: potential for expanding substrate ranges of Pseudomonas spp.

D L McBeth 1, B Hauer 1
PMCID: PMC168155  PMID: 8795249

Abstract

Twenty-five kilobases of Pseudomonas plasmid CAM-OCT DNA encoding a DNA repair gene(s) was cloned into the broad-host-range vector pVK100. The presence of the cloned genes increased the isolation frequency of Pseudomonas putida derivatives capable of using ethyl lactate or 3-methyl-3-buten-1-ol as their carbon source 15- and 8-fold, respectively, after UV irradiation. Ethyl lactate-utilizing strains expressed a novel intracellular hydrolase.

Full Text

The Full Text of this article is available as a PDF (291.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chakrabarty A. M. Genetic fusion of incompatible plasmids in Pseudomonas. Proc Natl Acad Sci U S A. 1973 Jun;70(6):1641–1644. doi: 10.1073/pnas.70.6.1641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Faber K., Franssen M. C. Prospects for the increased application of biocatalysts in organic transformations. Trends Biotechnol. 1993 Nov;11(11):461–470. doi: 10.1016/0167-7799(93)90079-O. [DOI] [PubMed] [Google Scholar]
  3. Friedman A. M., Long S. R., Brown S. E., Buikema W. J., Ausubel F. M. Construction of a broad host range cosmid cloning vector and its use in the genetic analysis of Rhizobium mutants. Gene. 1982 Jun;18(3):289–296. doi: 10.1016/0378-1119(82)90167-6. [DOI] [PubMed] [Google Scholar]
  4. Grund A., Shapiro J., Fennewald M., Bacha P., Leahy J., Markbreiter K., Nieder M., Toepfer M. Regulation of alkane oxidation in Pseudomonas putida. J Bacteriol. 1975 Aug;123(2):546–556. doi: 10.1128/jb.123.2.546-556.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hall B. G., Hauer B. Acquisition of new metabolic activities by microbial populations. Methods Enzymol. 1993;224:603–613. doi: 10.1016/0076-6879(93)24045-v. [DOI] [PubMed] [Google Scholar]
  6. Holloway B. W., Morgan A. F. Genome organization in Pseudomonas. Annu Rev Microbiol. 1986;40:79–105. doi: 10.1146/annurev.mi.40.100186.000455. [DOI] [PubMed] [Google Scholar]
  7. Horn J. M., Ohman D. E. Transcriptional and translational analyses of recA mutant alleles in Pseudomonas aeruginosa. J Bacteriol. 1988 Apr;170(4):1637–1650. doi: 10.1128/jb.170.4.1637-1650.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Jacobsen E. N., Finney N. S. Synthetic and biological catalysts in chemical synthesis: how to assess practical utility. Chem Biol. 1994 Oct;1(2):85–90. doi: 10.1016/1074-5521(94)90045-0. [DOI] [PubMed] [Google Scholar]
  9. Jacoby G. A., Sutton L., Knobel L., Mammen P. Properties of IncP-2 plasmids of Pseudomonas spp. Antimicrob Agents Chemother. 1983 Aug;24(2):168–175. doi: 10.1128/aac.24.2.168. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Jaeger K. E., Ransac S., Dijkstra B. W., Colson C., van Heuvel M., Misset O. Bacterial lipases. FEMS Microbiol Rev. 1994 Sep;15(1):29–63. doi: 10.1111/j.1574-6976.1994.tb00121.x. [DOI] [PubMed] [Google Scholar]
  11. Kokjohn T. A., Miller R. V. IncN plasmids mediate UV resistance and error-prone repair in Pseudomonas aeruginosa PAO. Microbiology. 1994 Jan;140(Pt 1):43–48. doi: 10.1099/13500872-140-1-43. [DOI] [PubMed] [Google Scholar]
  12. Lehrbach P., Kung A. H., Lee B. T., Jacoby G. A. Plasmid modification of radiation and chemical-mutagen sensitivity in Pseudomonas aeruginosa. J Gen Microbiol. 1977 Jan;98(1):167–176. doi: 10.1099/00221287-98-1-167. [DOI] [PubMed] [Google Scholar]
  13. McBeth D. L. Effect of degradative plasmid CAM-OCT on responses of Pseudomonas bacteria to UV light. J Bacteriol. 1989 Feb;171(2):975–982. doi: 10.1128/jb.171.2.975-982.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Owen D. J., Eggink G., Hauer B., Kok M., McBeth D. L., Yang Y. L., Shapiro J. A. Physical structure, genetic content and expression of the alkBAC operon. Mol Gen Genet. 1984;197(3):373–383. doi: 10.1007/BF00329932. [DOI] [PubMed] [Google Scholar]
  15. Perry K. L., Walker G. C. Identification of plasmid (pKM101)-coded proteins involved in mutagenesis and UV resistance. Nature. 1982 Nov 18;300(5889):278–281. doi: 10.1038/300278a0. [DOI] [PubMed] [Google Scholar]
  16. Schmidhauser T. J., Ditta G., Helinski D. R. Broad-host-range plasmid cloning vectors for gram-negative bacteria. Biotechnology. 1988;10:287–332. doi: 10.1016/b978-0-409-90042-2.50021-0. [DOI] [PubMed] [Google Scholar]
  17. Shapiro J. A. Natural genetic engineering of the bacterial genome. Curr Opin Genet Dev. 1993 Dec;3(6):845–848. doi: 10.1016/0959-437x(93)90003-8. [DOI] [PubMed] [Google Scholar]
  18. Simonson C. S., Kokjohn T. A., Miller R. V. Inducible UV repair potential of Pseudomonas aeruginosa PAO. J Gen Microbiol. 1990 Jul;136(7):1241–1249. doi: 10.1099/00221287-136-7-1241. [DOI] [PubMed] [Google Scholar]
  19. Walker G. C. Mutagenesis and inducible responses to deoxyribonucleic acid damage in Escherichia coli. Microbiol Rev. 1984 Mar;48(1):60–93. doi: 10.1128/mr.48.1.60-93.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES