Abstract
The Rhodobacter sphaeroides hemA gene codes for 5-aminolevulinate (ALA) synthase. This enzyme catalyzes the pyridoxal phosphate-dependent condensation of succinyl coenzyme A and glycine-forming ALA. The R. sphaeroides hemA gene in the pUC18/19 vector system was transformed into Escherichia coli. The effects of both genetic and physiological factors on the expression of ALA synthase and the production of ALA were studied. ALA synthase activity levels were maximal when hemA had the same transcription direction as the lac promoter. The distance between the lac promoter and hemA affected the expression of ALA synthase on different growth substrates. The E. coli host strain used had an enormous effect on the ALA synthase activity level and on the production of ALA, with E. coli DH1 being best suited. The ALA synthase activity level was also dependent on the carbon source. Succinate, L-malate, fumarate, and L-aspartate gave the highest levels of ALA synthase activity, while the use of lactose as a carbon source resulted in a repression of ALA synthase. After growth on succinate, ALA synthase represented approximately 5% of total cellular protein. The ALA synthase activity level was also dependent on the pH of the medium, with maximal activity occurring at pH 6.5. ALA production by whole cells was limited by the availability of glycine, and the addition of 2 g of glycine per liter to the growth medium increased the production of ALA fivefold, to 2.25 mM. In recombinant E. coli extracts, up to 22 mM ALA was produced from succinate, glycine, and ATP.
Full Text
The Full Text of this article is available as a PDF (333.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Borthwick I. A., Srivastava G., Brooker J. D., May B. K., Elliott W. H. Purification of 5-aminolaevulinate synthase from liver mitochondria of chick embryo. Eur J Biochem. 1983 Jan 1;129(3):615–620. doi: 10.1111/j.1432-1033.1983.tb07093.x. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
- Chen W., Russell C. S., Murooka Y., Cosloy S. D. 5-Aminolevulinic acid synthesis in Escherichia coli requires expression of hemA. J Bacteriol. 1994 May;176(9):2743–2746. doi: 10.1128/jb.176.9.2743-2746.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dzelzkalns V., Foley T., Beale S. I. Delta-Aminolevulinic acid synthase of Euglena gracilis: physical and kinetic properties. Arch Biochem Biophys. 1982 Jun;216(1):196–203. doi: 10.1016/0003-9861(82)90204-1. [DOI] [PubMed] [Google Scholar]
- Edwards S., Jackson D., Reynoldson J., Shanley B. Neuropharmacology of delta-aminolaevulinic acid. II. Effect of chronic administration in mice. Neurosci Lett. 1984 Sep 7;50(1-3):169–173. doi: 10.1016/0304-3940(84)90481-6. [DOI] [PubMed] [Google Scholar]
- Ferreira G. C., Dailey H. A. Expression of mammalian 5-aminolevulinate synthase in Escherichia coli. Overproduction, purification, and characterization. J Biol Chem. 1993 Jan 5;268(1):584–590. [PubMed] [Google Scholar]
- Ghrayeb J., Kimura H., Takahara M., Hsiung H., Masui Y., Inouye M. Secretion cloning vectors in Escherichia coli. EMBO J. 1984 Oct;3(10):2437–2442. doi: 10.1002/j.1460-2075.1984.tb02151.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gibson J., Upper C. D., Gunsalus I. C. Succinyl coenzyme A synthetase from Escherichia coli. I. Purification and properties. J Biol Chem. 1967 May 25;242(10):2474–2477. [PubMed] [Google Scholar]
- Hartmans S., Smits J. P., van der Werf M. J., Volkering F., de Bont J. A. Metabolism of Styrene Oxide and 2-Phenylethanol in the Styrene-Degrading Xanthobacter Strain 124X. Appl Environ Microbiol. 1989 Nov;55(11):2850–2855. doi: 10.1128/aem.55.11.2850-2855.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kannangara C. G., Gough S. P., Bruyant P., Hoober J. K., Kahn A., von Wettstein D. tRNA(Glu) as a cofactor in delta-aminolevulinate biosynthesis: steps that regulate chlorophyll synthesis. Trends Biochem Sci. 1988 Apr;13(4):139–143. doi: 10.1016/0968-0004(88)90071-0. [DOI] [PubMed] [Google Scholar]
- Kipe-Nolt J. A., Stevens S. E., Jr, Stevens C. L. Biosynthesis of delta-aminolevulinic acid by blue-green algae (cyanobacteria). J Bacteriol. 1978 Jul;135(1):286–288. doi: 10.1128/jb.135.1.286-288.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Klotsky R. A., Schwartz I. Measurement of cat expression from growth-rate-regulated promoters employing beta-lactamase activity as an indicator of plasmid copy number. Gene. 1987;55(1):141–146. doi: 10.1016/0378-1119(87)90257-5. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Levy J. G. Photodynamic therapy. Trends Biotechnol. 1995 Jan;13(1):14–18. doi: 10.1016/S0167-7799(00)88895-2. [DOI] [PubMed] [Google Scholar]
- Li J. M., Brathwaite O., Cosloy S. D., Russell C. S. 5-Aminolevulinic acid synthesis in Escherichia coli. J Bacteriol. 1989 May;171(5):2547–2552. doi: 10.1128/jb.171.5.2547-2552.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Malik Z., Hanania J., Nitzan Y. Bactericidal effects of photoactivated porphyrins--an alternative approach to antimicrobial drugs. J Photochem Photobiol B. 1990 May;5(3-4):281–293. doi: 10.1016/1011-1344(90)85044-w. [DOI] [PubMed] [Google Scholar]
- Marcus J. P., Dekker E. E. Threonine formation via the coupled activity of 2-amino-3-ketobutyrate coenzyme A lyase and threonine dehydrogenase. J Bacteriol. 1993 Oct;175(20):6505–6511. doi: 10.1128/jb.175.20.6505-6511.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McKitrick J. C., Pizer L. I. Regulation of phosphoglycerate dehydrogenase levels and effect on serine synthesis in Escherichia coli K-12. J Bacteriol. 1980 Jan;141(1):235–245. doi: 10.1128/jb.141.1.235-245.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Michalski W. P., Nicholas D. J. Inhibition of bacteriochlorophyll synthesis in Rhodobacter sphaeroides subsp. denitrificans grown in light under denitrifying conditions. J Bacteriol. 1987 Oct;169(10):4651–4659. doi: 10.1128/jb.169.10.4651-4659.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Neidle E. L., Kaplan S. 5-Aminolevulinic acid availability and control of spectral complex formation in hemA and hemT mutants of Rhodobacter sphaeroides. J Bacteriol. 1993 Apr;175(8):2304–2313. doi: 10.1128/jb.175.8.2304-2313.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Neidle E. L., Kaplan S. Expression of the Rhodobacter sphaeroides hemA and hemT genes, encoding two 5-aminolevulinic acid synthase isozymes. J Bacteriol. 1993 Apr;175(8):2292–2303. doi: 10.1128/jb.175.8.2292-2303.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oelze J. Light and oxygen regulation of the synthesis of bacteriochlorophylls a and c in Chloroflexus aurantiacus. J Bacteriol. 1992 Aug;174(15):5021–5026. doi: 10.1128/jb.174.15.5021-5026.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ohashi A., Kikuchi G. Purification and some properties of two forms of delta-aminolevulinate synthase from rat liver cytosol. J Biochem. 1979 Jan;85(1):239–247. doi: 10.1093/oxfordjournals.jbchem.a132317. [DOI] [PubMed] [Google Scholar]
- Picardal F. W., Arnold R. G., Couch H., Little A. M., Smith M. E. Involvement of cytochromes in the anaerobic biotransformation of tetrachloromethane by Shewanella putrefaciens 200. Appl Environ Microbiol. 1993 Nov;59(11):3763–3770. doi: 10.1128/aem.59.11.3763-3770.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tait G. H. Aminolaevulinate synthetase of Micrococcus denitrificans. Purification and properties of the enzyme, and the effect of growth conditions on the enzyme activity in cells. Biochem J. 1973 Feb;131(2):389–403. doi: 10.1042/bj1310389. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Volland C., Felix F. Isolation and properties of 5-aminolevulinate synthase from the yeast Saccharomyces cerevisiae. Eur J Biochem. 1984 Aug 1;142(3):551–557. doi: 10.1111/j.1432-1033.1984.tb08321.x. [DOI] [PubMed] [Google Scholar]
- Wang J., Huang Z. H., Gage D. A., Watson J. T. Analysis of amino acids by gas chromatography-flame ionization detection and gas chromatography-mass spectrometry: simultaneous derivatization of functional groups by an aqueous-phase chloroformate-mediated reaction. J Chromatogr A. 1994 Mar 4;663(1):71–78. doi: 10.1016/0021-9673(94)80497-4. [DOI] [PubMed] [Google Scholar]