Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1996 Oct;62(10):3587–3593. doi: 10.1128/aem.62.10.3587-3593.1996

Manganese-enhanced biotransformation of atrazine by the white rot fungus Pleurotus pulmonarius and its correlation with oxidation activity.

S Masaphy 1, Y Henis 1, D Levanon 1
PMCID: PMC168164  PMID: 8967773

Abstract

Manganese enhanced atrazine transformation by the fungus Pleurotus pulmonarius when added to a liquid culture medium at concentrations of up to 300 microM. Both N-dealkylated and propylhydroxylated metabolites accumulated in the culture medium, with the former accumulating to a greater extent than did the latter. Lipid peroxidation, oxygenase and peroxidase activities, and the cytochrome P-450 concentration increased. In addition, an increase in the spectral interactions between atrazine and components in the cell extract was observed. Antioxidants, mainly nordihydroguaiaretic acid, which inhibits lipoxygenase, peroxidase, and P-450 activities, and piperonyl butoxide, which inhibits P-450 activity, inhibited atrazine transformation by the mycelium. It is suggested that the stimulation of oxidative activity by Mn might be responsible for increasing the biotransformation of atrazine and for nonspecific transformations of other xenobiotic compounds.

Full Text

The Full Text of this article is available as a PDF (319.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ballard S. A., Ellis S. W., Kelly S. L., Troke P. F. A novel method for studying ergosterol biosynthesis by a cell-free preparation of Aspergillus fumigatus and its inhibition by azole antifungal agents. J Med Vet Mycol. 1990;28(4):335–344. [PubMed] [Google Scholar]
  2. Bao W., Fukushima Y., Jensen K. A., Jr, Moen M. A., Hammel K. E. Oxidative degradation of non-phenolic lignin during lipid peroxidation by fungal manganese peroxidase. FEBS Lett. 1994 Nov 14;354(3):297–300. doi: 10.1016/0014-5793(94)01146-x. [DOI] [PubMed] [Google Scholar]
  3. Bonnarme P., Jeffries T. W. Mn(II) Regulation of Lignin Peroxidases and Manganese-Dependent Peroxidases from Lignin-Degrading White Rot Fungi. Appl Environ Microbiol. 1990 Jan;56(1):210–217. doi: 10.1128/aem.56.1.210-217.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Byczkowski J. Z., Kulkarni A. P. Lipoxygenase-catalyzed epoxidation of benzo(a)pyrene-7,8-dihydrodiol. Biochem Biophys Res Commun. 1989 Mar 31;159(3):1199–1205. doi: 10.1016/0006-291x(89)92237-7. [DOI] [PubMed] [Google Scholar]
  5. Capdevila J., Gil L., Orellana M., Marnett L. J., Mason J. I., Yadagiri P., Falck J. R. Inhibitors of cytochrome P-450-dependent arachidonic acid metabolism. Arch Biochem Biophys. 1988 Mar;261(2):257–263. doi: 10.1016/0003-9861(88)90340-2. [DOI] [PubMed] [Google Scholar]
  6. Donnelly P. K., Entry J. A., Crawford D. L. Degradation of atrazine and 2,4-dichlorophenoxyacetic acid by mycorrhizal fungi at three nitrogen concentrations in vitro. Appl Environ Microbiol. 1993 Aug;59(8):2642–2647. doi: 10.1128/aem.59.8.2642-2647.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Estabrook R. W. Microsomal electron-transport reactions: an overview. Methods Enzymol. 1978;52:43–47. doi: 10.1016/s0076-6879(78)52004-1. [DOI] [PubMed] [Google Scholar]
  8. GERTLER M. M., COVALT D. A., RUSK H. A. Medical problems encountered in rehabilitation. Clin Med (Northfield) 1961 Dec;8:2293–2298. [PubMed] [Google Scholar]
  9. Hamberg M., Zhang L. Y., Brodowsky I. D., Oliw E. H. Sequential oxygenation of linoleic acid in the fungus Gaeumannomyces graminis: stereochemistry of dioxygenase and hydroperoxide isomerase reactions. Arch Biochem Biophys. 1994 Feb 15;309(1):77–80. doi: 10.1006/abbi.1994.1087. [DOI] [PubMed] [Google Scholar]
  10. Heath R. L., Packer L. Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys. 1968 Apr;125(1):189–198. doi: 10.1016/0003-9861(68)90654-1. [DOI] [PubMed] [Google Scholar]
  11. Jefcoate C. R., Gaylor J. L., Calabrese R. L. Ligand interactions with cytochrome P-450. I. Binding of primary amines. Biochemistry. 1969 Aug;8(8):3455–3463. doi: 10.1021/bi00836a049. [DOI] [PubMed] [Google Scholar]
  12. Jefcoate C. R. Measurement of substrate and inhibitor binding to microsomal cytochrome P-450 by optical-difference spectroscopy. Methods Enzymol. 1978;52:258–279. doi: 10.1016/s0076-6879(78)52029-6. [DOI] [PubMed] [Google Scholar]
  13. Kerem Z., Hadar Y. Effect of Manganese on Lignin Degradation by Pleurotus ostreatus during Solid-State Fermentation. Appl Environ Microbiol. 1993 Dec;59(12):4115–4120. doi: 10.1128/aem.59.12.4115-4120.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kulkarni A. P., Cook D. C. Hydroperoxidase activity of lipoxygenase: hydrogen peroxide-dependent oxidation of xenobiotics. Biochem Biophys Res Commun. 1988 Sep 15;155(2):1075–1081. doi: 10.1016/s0006-291x(88)80606-5. [DOI] [PubMed] [Google Scholar]
  15. Masaphy S., Levanon D., Vaya J., Henis Y. Isolation and Characterization of a Novel Atrazine Metabolite Produced by the Fungus Pleurotus pulmonarius, 2-Chloro-4-Ethylamino-6-(1-Hydroxyisopropyl)Amino-1,3,5-Triazine. Appl Environ Microbiol. 1993 Dec;59(12):4342–4346. doi: 10.1128/aem.59.12.4342-4346.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Moen M. A., Hammel K. E. Lipid Peroxidation by the Manganese Peroxidase of Phanerochaete chrysosporium Is the Basis for Phenanthrene Oxidation by the Intact Fungus. Appl Environ Microbiol. 1994 Jun;60(6):1956–1961. doi: 10.1128/aem.60.6.1956-1961.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Mougin C., Laugero C., Asther M., Dubroca J., Frasse P., Asther M. Biotransformation of the Herbicide Atrazine by the White Rot Fungus Phanerochaete chrysosporium. Appl Environ Microbiol. 1994 Feb;60(2):705–708. doi: 10.1128/aem.60.2.705-708.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Nagy I., Compernolle F., Ghys K., Vanderleyden J., De Mot R. A single cytochrome P-450 system is involved in degradation of the herbicides EPTC (S-ethyl dipropylthiocarbamate) and atrazine by Rhodococcus sp. strain NI86/21. Appl Environ Microbiol. 1995 May;61(5):2056–2060. doi: 10.1128/aem.61.5.2056-2060.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. OMURA T., SATO R. THE CARBON MONOXIDE-BINDING PIGMENT OF LIVER MICROSOMES. I. EVIDENCE FOR ITS HEMOPROTEIN NATURE. J Biol Chem. 1964 Jul;239:2370–2378. [PubMed] [Google Scholar]
  20. Okazaki O., Guengerich F. P. Evidence for specific base catalysis in N-dealkylation reactions catalyzed by cytochrome P450 and chloroperoxidase. Differences in rates of deprotonation of aminium radicals as an explanation for high kinetic hydrogen isotope effects observed with peroxidases. J Biol Chem. 1993 Jan 25;268(3):1546–1552. [PubMed] [Google Scholar]
  21. Orrenius S., Ericsson J. L., Ernster L. Phenobarbital-induced synthesis of the microsomal drug-metabolizing enzyme system and its relationship to the proliferation of endoplasmic membranes. A morphological and biochemical study. J Cell Biol. 1965 Jun;25(3):627–639. doi: 10.1083/jcb.25.3.627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Reichhart D., Salaün J. P., Benveniste I., Durst F. Time Course of Induction of Cytochrome P-450, NADPH-Cytochrome c Reductase, and Cinnamic Acid Hydroxylase by Phenobarbital, Ethanol, Herbicides, and Manganese in Higher Plant Microsomes. Plant Physiol. 1980 Oct;66(4):600–604. doi: 10.1104/pp.66.4.600. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Ritter W. F. Pesticide contamination of ground water in the United States--a review. J Environ Sci Health B. 1990 Feb;25(1):1–29. doi: 10.1080/03601239009372674. [DOI] [PubMed] [Google Scholar]
  24. Shoun H., Suyama W., Yasui T. Soluble, nitrate/nitrite-inducible cytochrome P-450 of the fungus, Fusarium oxysporum. FEBS Lett. 1989 Feb 13;244(1):11–14. doi: 10.1016/0014-5793(89)81151-2. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES