Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1996 Oct;62(10):3605–3613. doi: 10.1128/aem.62.10.3605-3613.1996

Degradative capacities and 16S rRNA-targeted whole-cell hybridization of sulfate-reducing bacteria in an anaerobic enrichment culture utilizing alkylbenzenes from crude oil.

R Rabus 1, M Fukui 1, H Wilkes 1, F Widdle 1
PMCID: PMC168167  PMID: 8837415

Abstract

A mesophilic sulfate-reducing enrichment culture growing anaerobically on crude oil was used as a model system to study which nutritional types of sulfate-reducing bacteria may develop on original petroleum constituents in oil wells, tanks, and pipelines. Chemical analysis of oil hydrocarbons during growth revealed depletion of toluene and o-xylene within 1 month and of m-xylene, o-ethyltoluene, m-ethyltoluene, m-propyltoluene, and m-isopropyltoluene within approximately 2 months. In anaerobic counting series, the highest numbers of CFU (6 x 10(6) to 8 x 10(6) CFU ml-1) were obtained with toluene and benzoate. Almost the same numbers were obtained with lactate, a substrate often used for detection of the vibrio-shaped, incompletely oxidizing Desulfovibrio sp. In the present study, however, lactate yielded mostly colonies of oval to rod-shaped, completely oxidizing, sulfate-reducing bacteria which were able to grow slowly on toluene or crude oil. Desulfovibrio species were detected only at low numbers (3 x 10(5) CFU ml-1). In agreement with this finding, a fluorescently labeled, 16S rRNA-targeted oligonucleotide probe described in the literature as specific for members of the Desulfovibrionaceae (suggested family) hybridized only with a small portion (< 5%) of the cells in the enrichment culture. These results are consistent with the observation that known Desulfovibrio species do not utilize aromatic hydrocarbons, the predominant substrates in the enrichment culture. All known sulfate-reducing bacteria which utilize aromatic compounds belong to a separate branch, the Desulfobacteriaceae (suggested family). Most members of this family are complete oxidizers. For specific hybridization with members of this branch, the probe had to be modified by a nucleotide exchange. Indeed, this modified probe hybridized with more than 95% of the cells in the enrichment culture. The results show that completely oxidizing, alkylbenzene-utilizing sulfate-reducing bacteria rather than Desulfovibrio species have to be considered in attempts to understand the microbiology of sulfide production in oil wells, tanks, and pipelines when no electron donors other than the indigenous oil constituents are available.

Full Text

The Full Text of this article is available as a PDF (714.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amann R. I., Binder B. J., Olson R. J., Chisholm S. W., Devereux R., Stahl D. A. Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol. 1990 Jun;56(6):1919–1925. doi: 10.1128/aem.56.6.1919-1925.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Amann R. I., Krumholz L., Stahl D. A. Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. J Bacteriol. 1990 Feb;172(2):762–770. doi: 10.1128/jb.172.2.762-770.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Amann R. I., Ludwig W., Schleifer K. H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev. 1995 Mar;59(1):143–169. doi: 10.1128/mr.59.1.143-169.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Assmus B., Hutzler P., Kirchhof G., Amann R., Lawrence J. R., Hartmann A. In Situ Localization of Azospirillum brasilense in the Rhizosphere of Wheat with Fluorescently Labeled, rRNA-Targeted Oligonucleotide Probes and Scanning Confocal Laser Microscopy. Appl Environ Microbiol. 1995 Mar;61(3):1013–1019. doi: 10.1128/aem.61.3.1013-1019.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Beeder J., Nilsen R. K., Rosnes J. T., Torsvik T., Lien T. Archaeoglobus fulgidus Isolated from Hot North Sea Oil Field Waters. Appl Environ Microbiol. 1994 Apr;60(4):1227–1231. doi: 10.1128/aem.60.4.1227-1231.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Beeder J., Torsvik T., Lien T. Thermodesulforhabdus norvegicus gen. nov., sp. nov., a novel thermophilic sulfate-reducing bacterium from oil field water. Arch Microbiol. 1995 Nov;164(5):331–336. [PubMed] [Google Scholar]
  7. Beller H. R., Spormann A. M., Sharma P. K., Cole J. R., Reinhard M. Isolation and characterization of a novel toluene-degrading, sulfate-reducing bacterium. Appl Environ Microbiol. 1996 Apr;62(4):1188–1196. doi: 10.1128/aem.62.4.1188-1196.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Devereux R., Delaney M., Widdel F., Stahl D. A. Natural relationships among sulfate-reducing eubacteria. J Bacteriol. 1989 Dec;171(12):6689–6695. doi: 10.1128/jb.171.12.6689-6695.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Devereux R., He S. H., Doyle C. L., Orkland S., Stahl D. A., LeGall J., Whitman W. B. Diversity and origin of Desulfovibrio species: phylogenetic definition of a family. J Bacteriol. 1990 Jul;172(7):3609–3619. doi: 10.1128/jb.172.7.3609-3619.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Emmert D. B., Stoehr P. J., Stoesser G., Cameron G. N. The European Bioinformatics Institute (EBI) databases. Nucleic Acids Res. 1994 Sep;22(17):3445–3449. doi: 10.1093/nar/22.17.3445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hamilton W. A. Sulphate-reducing bacteria and anaerobic corrosion. Annu Rev Microbiol. 1985;39:195–217. doi: 10.1146/annurev.mi.39.100185.001211. [DOI] [PubMed] [Google Scholar]
  12. Magot M., Caumette P., Desperrier J. M., Matheron R., Dauga C., Grimont F., Carreau L. Desulfovibrio longus sp. nov., a sulfate-reducing bacterium isolated from an oil-producing well. Int J Syst Bacteriol. 1992 Jul;42(3):398–403. doi: 10.1099/00207713-42-3-398. [DOI] [PubMed] [Google Scholar]
  13. Maidak B. L., Larsen N., McCaughey M. J., Overbeek R., Olsen G. J., Fogel K., Blandy J., Woese C. R. The Ribosomal Database Project. Nucleic Acids Res. 1994 Sep;22(17):3485–3487. doi: 10.1093/nar/22.17.3485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Mankin A. S., Kagramanova V. K., Teterina N. L., Rubtsov P. M., Belova E. N., Kopylov A. M., Baratova L. A., Bogdanov A. A. The nucleotide sequence of the gene coding for the 16S rRNA from the archaebacterium Halobacterium halobium. Gene. 1985;37(1-3):181–189. doi: 10.1016/0378-1119(85)90271-9. [DOI] [PubMed] [Google Scholar]
  15. Moriya S., Ogasawara N., Yoshikawa H. Structure and function of the region of the replication origin of the Bacillus subtilis chromosome. III. Nucleotide sequence of some 10,000 base pairs in the origin region. Nucleic Acids Res. 1985 Apr 11;13(7):2251–2265. doi: 10.1093/nar/13.7.2251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Nazina T. N., Rozanova E. P. Termofil'nye sul'fatvosstanavlivaiushchie bakterii iz neftaianykh plastov. Mikrobiologiia. 1978 Jan-Feb;47(1):142–148. [PubMed] [Google Scholar]
  17. Nilsen R. K., Beeder J., Thorstenson T., Torsvik T. Distribution of thermophilic marine sulfate reducers in north sea oil field waters and oil reservoirs. Appl Environ Microbiol. 1996 May;62(5):1793–1798. doi: 10.1128/aem.62.5.1793-1798.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Rabus R., Nordhaus R., Ludwig W., Widdel F. Complete oxidation of toluene under strictly anoxic conditions by a new sulfate-reducing bacterium. Appl Environ Microbiol. 1993 May;59(5):1444–1451. doi: 10.1128/aem.59.5.1444-1451.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Rabus R., Widdel F. Anaerobic degradation of ethylbenzene and other aromatic hydrocarbons by new denitrifying bacteria. Arch Microbiol. 1995 Feb;163(2):96–103. doi: 10.1007/BF00381782. [DOI] [PubMed] [Google Scholar]
  20. Rabus R., Widdel F. Utilization of Alkylbenzenes during Anaerobic Growth of Pure Cultures of Denitrifying Bacteria on Crude Oil. Appl Environ Microbiol. 1996 Apr;62(4):1238–1241. doi: 10.1128/aem.62.4.1238-1241.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Ramsing N. B., Kühl M., Jørgensen B. B. Distribution of sulfate-reducing bacteria, O2, and H2S in photosynthetic biofilms determined by oligonucleotide probes and microelectrodes. Appl Environ Microbiol. 1993 Nov;59(11):3840–3849. doi: 10.1128/aem.59.11.3840-3849.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Rosnes J. T., Torsvik T., Lien T. Spore-forming thermophilic sulfate-reducing bacteria isolated from north sea oil field waters. Appl Environ Microbiol. 1991 Aug;57(8):2302–2307. doi: 10.1128/aem.57.8.2302-2307.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Rubtsov P. M., Musakhanov M. M., Zakharyev V. M., Krayev A. S., Skryabin K. G., Bayev A. A. The structure of the yeast ribosomal RNA genes. I. The complete nucleotide sequence of the 18S ribosomal RNA gene from Saccharomyces cerevisiae. Nucleic Acids Res. 1980 Dec 11;8(23):5779–5794. doi: 10.1093/nar/8.23.5779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Rueter P., Rabus R., Wilkes H., Aeckersberg F., Rainey F. A., Jannasch H. W., Widdel F. Anaerobic oxidation of hydrocarbons in crude oil by new types of sulphate-reducing bacteria. Nature. 1994 Dec 1;372(6505):455–458. doi: 10.1038/372455a0. [DOI] [PubMed] [Google Scholar]
  25. Shen W. F., Squires C., Squires C. L. Nucleotide sequence of the rrnG ribosomal RNA promoter region of Escherichia coli. Nucleic Acids Res. 1982 May 25;10(10):3303–3313. doi: 10.1093/nar/10.10.3303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Voordouw G., Armstrong S. M., Reimer M. F., Fouts B., Telang A. J., Shen Y., Gevertz D. Characterization of 16S rRNA genes from oil field microbial communities indicates the presence of a variety of sulfate-reducing, fermentative, and sulfide-oxidizing bacteria. Appl Environ Microbiol. 1996 May;62(5):1623–1629. doi: 10.1128/aem.62.5.1623-1629.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Voordouw G., Niviere V., Ferris F. G., Fedorak P. M., Westlake D. W. Distribution of Hydrogenase Genes in Desulfovibrio spp. and Their Use in Identification of Species from the Oil Field Environment. Appl Environ Microbiol. 1990 Dec;56(12):3748–3754. doi: 10.1128/aem.56.12.3748-3754.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Voordouw G., Shen Y., Harrington C. S., Telang A. J., Jack T. R., Westlake D. W. Quantitative reverse sample genome probing of microbial communities and its application to oil field production waters. Appl Environ Microbiol. 1993 Dec;59(12):4101–4114. doi: 10.1128/aem.59.12.4101-4114.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Voordouw G., Voordouw J. K., Jack T. R., Foght J., Fedorak P. M., Westlake D. W. Identification of distinct communities of sulfate-reducing bacteria in oil fields by reverse sample genome probing. Appl Environ Microbiol. 1992 Nov;58(11):3542–3552. doi: 10.1128/aem.58.11.3542-3552.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Voordouw G., Voordouw J. K., Karkhoff-Schweizer R. R., Fedorak P. M., Westlake D. W. Reverse sample genome probing, a new technique for identification of bacteria in environmental samples by DNA hybridization, and its application to the identification of sulfate-reducing bacteria in oil field samples. Appl Environ Microbiol. 1991 Nov;57(11):3070–3078. doi: 10.1128/aem.57.11.3070-3078.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Yang D., Oyaizu Y., Oyaizu H., Olsen G. J., Woese C. R. Mitochondrial origins. Proc Natl Acad Sci U S A. 1985 Jul;82(13):4443–4447. doi: 10.1073/pnas.82.13.4443. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES