Abstract
Many investigations of the interactions of microbial competitors in the gastrointestinal tract used continuous-flow anaerobic cultures. The simulation reported here was a deterministic 11-compartment model coded by using the C programming language and based on parameters from published in vitro studies and assumptions were data were unavailable. The resource compartments were glucose, lactose and sucrose, starch, sorbose, and serine. Six microbial competitors included indigenous nonpathogenic colonizers of the human gastrointestinal tract (Escherichia coli, Enterobacter aerogenes, Bacteroids ovatus, Fusobacterium varium, and Enterococcus faecalis) and the potential human enteropathogen Salmonella typhimurium. Flows of carbon from the resources to the microbes were modified by resource and space controls. Partitioning of resources to the competitors that could utilize them was calculated at each iteration on the basis of availability of all resources by feeding preference functions. Resources did not accumulate during iterations of the model. The results of the computer simulation of microbial competition model and for various modifications of the model. The results were based on few measured parameters but may be useful in the design of user-friendly software to aid researchers in defining and manipulating the microbial ecology of colonic ecosystems as relates to food-borne disease.
Full Text
The Full Text of this article is available as a PDF (324.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Carman R. J., Van Tassell R. L., Wilkins T. D. The normal intestinal microflora: ecology, variability and stability. Vet Hum Toxicol. 1993;35 (Suppl 1):11–14. [PubMed] [Google Scholar]
- Cummings J. H., Macfarlane G. T. The control and consequences of bacterial fermentation in the human colon. J Appl Bacteriol. 1991 Jun;70(6):443–459. doi: 10.1111/j.1365-2672.1991.tb02739.x. [DOI] [PubMed] [Google Scholar]
- Dijkstra J., Neal H. D., Beever D. E., France J. Simulation of nutrient digestion, absorption and outflow in the rumen: model description. J Nutr. 1992 Nov;122(11):2239–2256. doi: 10.1093/jn/122.11.2239. [DOI] [PubMed] [Google Scholar]
- Freter R., Stauffer E., Cleven D., Holdeman L. V., Moore W. E. Continuous-flow cultures as in vitro models of the ecology of large intestinal flora. Infect Immun. 1983 Feb;39(2):666–675. doi: 10.1128/iai.39.2.666-675.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gibson G. R., Roberfroid M. B. Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr. 1995 Jun;125(6):1401–1412. doi: 10.1093/jn/125.6.1401. [DOI] [PubMed] [Google Scholar]
- Gorbach S. L. Perturbation of intestinal microflora. Vet Hum Toxicol. 1993;35 (Suppl 1):15–23. [PubMed] [Google Scholar]
- Hume M. E., Nisbet D. J., Scanlan C. M., Corrier D. E., DeLoach J. R. Fermentation of radiolabelled substrates by batch cultures of caecal microflora maintained in a continuous-flow culture. J Appl Bacteriol. 1995 Jun;78(6):677–683. doi: 10.1111/j.1365-2672.1995.tb03115.x. [DOI] [PubMed] [Google Scholar]
- Impey C. S., Mead G. C., George S. M. Competitive exclusion of salmonellas from the chick caecum using a defined mixture of bacterial isolates from the caecal microflora of an adult bird. J Hyg (Lond) 1982 Dec;89(3):479–490. doi: 10.1017/s0022172400071047. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McCULLOUGH N. B., EISELE C. W. Experimental human salmonellosis. I. Pathogenicity of strains of Salmonella meleagridis and Salmonella anatum obtained from spray-dried whole egg. J Infect Dis. 1951 May-Jun;88(3):278–289. doi: 10.1093/infdis/88.3.278. [DOI] [PubMed] [Google Scholar]
- McNeil N. I. Nutritional implications of human and mammalian large intestinal function. World Rev Nutr Diet. 1988;56:1–42. doi: 10.1159/000416223. [DOI] [PubMed] [Google Scholar]
- Neal H. D., Dijkstra J., Gill M. Simulation of nutrient digestion, absorption and outflow in the rumen: model evaluation. J Nutr. 1992 Nov;122(11):2257–2272. doi: 10.1093/jn/122.11.2257. [DOI] [PubMed] [Google Scholar]
- Nisbet D. J., Corrier D. E., Scanlan C. M., Hollister A. G., Beier R. C., DeLoach J. R. Effect of a defined continuous-flow derived bacterial culture and dietary lactose on Salmonella typhimurium colonization in broiler chickens. Avian Dis. 1993 Oct-Dec;37(4):1017–1025. [PubMed] [Google Scholar]
- Russell J. B., O'Connor J. D., Fox D. G., Van Soest P. J., Sniffen C. J. A net carbohydrate and protein system for evaluating cattle diets: I. Ruminal fermentation. J Anim Sci. 1992 Nov;70(11):3551–3561. doi: 10.2527/1992.70113551x. [DOI] [PubMed] [Google Scholar]
- Stavric S. Defined cultures and prospects. Int J Food Microbiol. 1992 Mar-Apr;15(3-4):245–263. doi: 10.1016/0168-1605(92)90056-9. [DOI] [PubMed] [Google Scholar]
- Ushijima T., Ozaki Y. Potent antagonism of Escherichia coli, Bacteroides ovatus, Fusobacterium varium, and Enterococcus faecalis, alone or in combination, for enteropathogens in anaerobic continuous flow cultures. J Med Microbiol. 1986 Sep;22(2):157–163. doi: 10.1099/00222615-22-2-157. [DOI] [PubMed] [Google Scholar]
- Ushijima T., Seto A. Selected faecal bacteria and nutrients essential for antagonism of Salmonella typhimurium in anaerobic continuous flow cultures. J Med Microbiol. 1991 Aug;35(2):111–117. doi: 10.1099/00222615-35-2-111. [DOI] [PubMed] [Google Scholar]
- Wang X., Gibson G. R. Effects of the in vitro fermentation of oligofructose and inulin by bacteria growing in the human large intestine. J Appl Bacteriol. 1993 Oct;75(4):373–380. doi: 10.1111/j.1365-2672.1993.tb02790.x. [DOI] [PubMed] [Google Scholar]