Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1996 Oct;62(10):3762–3767. doi: 10.1128/aem.62.10.3762-3767.1996

Transposon mutagenesis in Desulfovibrio desulfuricans: development of a random mutagenesis tool from Tn7.

J D Wall 1, T Murnan 1, J Argyle 1, R S English 1, B J Rapp-Giles 1
PMCID: PMC168183  PMID: 8837431

Abstract

The transposons Tn5, Tn7, Tn9, and Tn10 or their derivatives have been examined for transposition in the sulfate-reducing bacterium Desulfovibrio desulfuricans G20. Tn7 inserted with a frequency of 10(-4) to 10(-3) into a unique attachment site that shows strong homology with those sites identified in other gram-negative bacteria. Inactivation of the tnsD gene in Tn7, encoding the function directing insertion into the unique site, yielded a derivative that transposed essentially randomly with a frequency of ca. 10(-6) per donor. Derivatives of Tn5, but not wild-type Tn5, were also found to undergo random transposition at a similar frequency. No evidence was obtained for transposition of Tn9 or Tn10.

Full Text

The Full Text of this article is available as a PDF (408.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Argyle J. L., Rapp-Giles B. J., Wall J. D. Plasmid transfer by conjugation in Desulfovibrio desulfuricans. FEMS Microbiol Lett. 1992 Jul 15;73(3):255–262. doi: 10.1016/0378-1097(92)90640-a. [DOI] [PubMed] [Google Scholar]
  2. Bainton R. J., Kubo K. M., Feng J. N., Craig N. L. Tn7 transposition: target DNA recognition is mediated by multiple Tn7-encoded proteins in a purified in vitro system. Cell. 1993 Mar 26;72(6):931–943. doi: 10.1016/0092-8674(93)90581-a. [DOI] [PubMed] [Google Scholar]
  3. Bao Y., Lies D. P., Fu H., Roberts G. P. An improved Tn7-based system for the single-copy insertion of cloned genes into chromosomes of gram-negative bacteria. Gene. 1991 Dec 20;109(1):167–168. doi: 10.1016/0378-1119(91)90604-a. [DOI] [PubMed] [Google Scholar]
  4. Boyer H. W., Roulland-Dussoix D. A complementation analysis of the restriction and modification of DNA in Escherichia coli. J Mol Biol. 1969 May 14;41(3):459–472. doi: 10.1016/0022-2836(69)90288-5. [DOI] [PubMed] [Google Scholar]
  5. Craig N. L. Tn7: a target site-specific transposon. Mol Microbiol. 1991 Nov;5(11):2569–2573. doi: 10.1111/j.1365-2958.1991.tb01964.x. [DOI] [PubMed] [Google Scholar]
  6. Figurski D. H., Helinski D. R. Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc Natl Acad Sci U S A. 1979 Apr;76(4):1648–1652. doi: 10.1073/pnas.76.4.1648. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Flores C. C., Cotterill S., Lichtenstein C. P. Overproduction of four functionally active proteins, TnsA, B, C, and D, required for Tn7 transposition to its attachment site, attTn7. Plasmid. 1992 Jul;28(1):80–85. doi: 10.1016/0147-619x(92)90038-c. [DOI] [PubMed] [Google Scholar]
  8. Hanahan D. Studies on transformation of Escherichia coli with plasmids. J Mol Biol. 1983 Jun 5;166(4):557–580. doi: 10.1016/s0022-2836(83)80284-8. [DOI] [PubMed] [Google Scholar]
  9. Hansen T. A. Metabolism of sulfate-reducing prokaryotes. Antonie Van Leeuwenhoek. 1994;66(1-3):165–185. doi: 10.1007/BF00871638. [DOI] [PubMed] [Google Scholar]
  10. Kim C. H., Helinski D. R., Ditta G. Overlapping transcription of the nifA regulatory gene in Rhizobium meliloti. Gene. 1986;50(1-3):141–148. doi: 10.1016/0378-1119(86)90319-7. [DOI] [PubMed] [Google Scholar]
  11. Kleckner N., Bender J., Gottesman S. Uses of transposons with emphasis on Tn10. Methods Enzymol. 1991;204:139–180. doi: 10.1016/0076-6879(91)04009-d. [DOI] [PubMed] [Google Scholar]
  12. Kubo K. M., Craig N. L. Bacterial transposon Tn7 utilizes two different classes of target sites. J Bacteriol. 1990 May;172(5):2774–2778. doi: 10.1128/jb.172.5.2774-2778.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. McKown R. L., Orle K. A., Chen T., Craig N. L. Sequence requirements of Escherichia coli attTn7, a specific site of transposon Tn7 insertion. J Bacteriol. 1988 Jan;170(1):352–358. doi: 10.1128/jb.170.1.352-358.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Priefer U. B., Simon R., Pühler A. Extension of the host range of Escherichia coli vectors by incorporation of RSF1010 replication and mobilization functions. J Bacteriol. 1985 Jul;163(1):324–330. doi: 10.1128/jb.163.1.324-330.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Rapp B. J., Wall J. D. Genetic transfer in Desulfovibrio desulfuricans. Proc Natl Acad Sci U S A. 1987 Dec;84(24):9128–9130. doi: 10.1073/pnas.84.24.9128. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Selvaraj G., Iyer V. N. Suicide plasmid vehicles for insertion mutagenesis in Rhizobium meliloti and related bacteria. J Bacteriol. 1983 Dec;156(3):1292–1300. doi: 10.1128/jb.156.3.1292-1300.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Simon R. High frequency mobilization of gram-negative bacterial replicons by the in vitro constructed Tn5-Mob transposon. Mol Gen Genet. 1984;196(3):413–420. doi: 10.1007/BF00436188. [DOI] [PubMed] [Google Scholar]
  18. Sundström L., Roy P. H., Sköld O. Site-specific insertion of three structural gene cassettes in transposon Tn7. J Bacteriol. 1991 May;173(9):3025–3028. doi: 10.1128/jb.173.9.3025-3028.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Waddell C. S., Craig N. L. Tn7 transposition: two transposition pathways directed by five Tn7-encoded genes. Genes Dev. 1988 Feb;2(2):137–149. doi: 10.1101/gad.2.2.137. [DOI] [PubMed] [Google Scholar]
  20. Wall J. D., Rapp-Giles B. J., Rousset M. Characterization of a small plasmid from Desulfovibrio desulfuricans and its use for shuttle vector construction. J Bacteriol. 1993 Jul;175(13):4121–4128. doi: 10.1128/jb.175.13.4121-4128.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Weimer P. J., Van Kavelaar M. J., Michel C. B., Ng T. K. Effect of Phosphate on the Corrosion of Carbon Steel and on the Composition of Corrosion Products in Two-Stage Continuous Cultures of Desulfovibrio desulfuricans. Appl Environ Microbiol. 1988 Feb;54(2):386–396. doi: 10.1128/aem.54.2.386-396.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Wolk C. P., Cai Y., Panoff J. M. Use of a transposon with luciferase as a reporter to identify environmentally responsive genes in a cyanobacterium. Proc Natl Acad Sci U S A. 1991 Jun 15;88(12):5355–5359. doi: 10.1073/pnas.88.12.5355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Xu H. W., Love J., Borghese R., Wall J. D. Identification and isolation of genes essential for H2 oxidation in Rhodobacter capsulatus. J Bacteriol. 1989 Feb;171(2):714–721. doi: 10.1128/jb.171.2.714-721.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES