Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1996 Oct;62(10):3826–3833. doi: 10.1128/aem.62.10.3826-3833.1996

The NAD(P)H-dependent glutamate dehydrogenase activities of Prevotella ruminicola B(1)4 can be attributed to one enzyme (GdhA), and gdhA expression is regulated in response to the nitrogen source available for growth.

Z Wen 1, M Morrison 1
PMCID: PMC168191  PMID: 8837439

Abstract

Prevotella ruminicola B(1)4 possesses both NADPH- and NADH-linked glutamate dehydrogenase (GDH) activities, with the greatest specific activity being measured from ammonia-limited cultures. Relative to cells grown in the presence of 1 mM ammonium chloride, the NADPH-dependent activity was decreased approximately 10-fold when peptides were provided as a nitrogen source. Nondenaturing polyacrylamide gel electrophoresis (PAGE) was used to visualize the GDH protein(s) in cell extracts of P. ruminicola. For all growth conditions tested, only one GDH protein was detectable, and its relative abundance, as well as its reactivity with either NAD(P)+ or NAD(P)H, correlated well with the specific activities measured from whole-cell assays. Consistent with the findings from enzyme assays and PAGE activity gels, Northern (RNA) blot analysis revealed that expression of a gene encoding NAD(P)H-GDH activity was greatest in ammonia-grown cultures and that GDH activity is regulated in response to nitrogen source (ammonia versus peptides), probably at the level of transcription. A gene encoding the NAD(P)H-utilizing GDH activity (gdhA) was cloned, and its nucleotide sequence was determined and shown to contain an open reading frame of 1,332 bp which would encode a polypeptide of 48.8 kDa. The deduced amino acid sequence possesses three highly conserved motifs typical of family I GDHs, but several unique amino acid substitutions within these motifs were evident. These results are discussed within the context of ruminal nitrogen metabolism and the growth efficiency of succinate- and propionate-producing anaerobic bacteria.

Full Text

The Full Text of this article is available as a PDF (621.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allison M. J., Robinson I. M. Biosynthesis of alpha-ketoglutarate by the reductive carboxylation of succinate in Bacteroides ruminicola. J Bacteriol. 1970 Oct;104(1):50–56. doi: 10.1128/jb.104.1.50-56.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Avgustin G., Wright F., Flint H. J. Genetic diversity and phylogenetic relationships among strains of Prevotella (Bacteroides) ruminicola from the rumen. Int J Syst Bacteriol. 1994 Apr;44(2):246–255. doi: 10.1099/00207713-44-2-246. [DOI] [PubMed] [Google Scholar]
  3. Benachenhou-Lahfa N., Forterre P., Labedan B. Evolution of glutamate dehydrogenase genes: evidence for two paralogous protein families and unusual branching patterns of the archaebacteria in the universal tree of life. J Mol Evol. 1993 Apr;36(4):335–346. doi: 10.1007/BF00182181. [DOI] [PubMed] [Google Scholar]
  4. Bernard H. U., Remaut E., Hershfield M. V., Das H. K., Helinski D. R., Yanofsky C., Franklin N. Construction of plasmid cloning vehicles that promote gene expression from the bacteriophage lambda pL promoter. Gene. 1979 Jan;5(1):59–76. doi: 10.1016/0378-1119(79)90092-1. [DOI] [PubMed] [Google Scholar]
  5. Consalvi V., Chiaraluce R., Politi L., Gambacorta A., De Rosa M., Scandurra R. Glutamate dehydrogenase from the thermoacidophilic archaebacterium Sulfolobus solfataricus. Eur J Biochem. 1991 Mar 14;196(2):459–467. doi: 10.1111/j.1432-1033.1991.tb15837.x. [DOI] [PubMed] [Google Scholar]
  6. Consalvi V., Chiaraluce R., Politi L., Vaccaro R., De Rosa M., Scandurra R. Extremely thermostable glutamate dehydrogenase from the hyperthermophilic archaebacterium Pyrococcus furiosus. Eur J Biochem. 1991 Dec 18;202(3):1189–1196. doi: 10.1111/j.1432-1033.1991.tb16489.x. [DOI] [PubMed] [Google Scholar]
  7. Dever T. E., Glynias M. J., Merrick W. C. GTP-binding domain: three consensus sequence elements with distinct spacing. Proc Natl Acad Sci U S A. 1987 Apr;84(7):1814–1818. doi: 10.1073/pnas.84.7.1814. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Diruggiero J., Robb F. T. Expression and in vitro assembly of recombinant glutamate dehydrogenase from the hyperthermophilic archaeon Pyrococcus furiosus. Appl Environ Microbiol. 1995 Jan;61(1):159–164. doi: 10.1128/aem.61.1.159-164.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dombrowski K. E., Huang Y. C., Colman R. F. Identification of amino acids modified by the bifunctional affinity label 5'-(p-(fluorosulfonyl)benzoyl)-8-azidoadenosine in the reduced coenzyme regulatory site of bovine liver glutamate dehydrogenase. Biochemistry. 1992 Apr 21;31(15):3785–3793. doi: 10.1021/bi00130a008. [DOI] [PubMed] [Google Scholar]
  10. Duncan P. A., White B. A., Mackie R. I. Purification and properties of NADP-dependent glutamate dehydrogenase from Ruminococcus flavefaciens FD-1. Appl Environ Microbiol. 1992 Dec;58(12):4032–4037. doi: 10.1128/aem.58.12.4032-4037.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Frieden C., Colman R. F. Glutamate dehydrogenase concentration as a determinant in the effect of purine nucleotides on enzymatic activity. J Biol Chem. 1967 Apr 25;242(8):1705–1715. [PubMed] [Google Scholar]
  12. Glass T. L., Hylemon P. B. Characterization of a pyridine nucleotide-nonspecific glutamate dehydrogenase from Bacteroides thetaiotaomicron. J Bacteriol. 1980 Mar;141(3):1320–1330. doi: 10.1128/jb.141.3.1320-1330.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Joyner A. E., Jr, Baldwin R. L. Enzymatic studies of pure cultures of rumen microorganisms. J Bacteriol. 1966 Nov;92(5):1321–1330. doi: 10.1128/jb.92.5.1321-1330.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  15. Meers J. L., Tempest D. W., Brown C. M. 'Glutamine(amide):2-oxoglutarate amino transferase oxido-reductase (NADP); an enzyme involved in the synthesis of glutamate by some bacteria. J Gen Microbiol. 1970 Dec;64(2):187–194. doi: 10.1099/00221287-64-2-187. [DOI] [PubMed] [Google Scholar]
  16. PITTMAN K. A., BRYANT M. P. PEPTIDES AND OTHER NITROGEN SOURCES FOR GROWTH OF BACTEROIDES RUMINICOLA. J Bacteriol. 1964 Aug;88:401–410. doi: 10.1128/jb.88.2.401-410.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Pittman K. A., Lakshmanan S., Bryant M. P. Oligopeptide uptake by Bacteroides ruminicola. J Bacteriol. 1967 May;93(5):1499–1508. doi: 10.1128/jb.93.5.1499-1508.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Russell J. B. Fermentation of Peptides by Bacteroides ruminicola B(1)4. Appl Environ Microbiol. 1983 May;45(5):1566–1574. doi: 10.1128/aem.45.5.1566-1574.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Russell J. B. Glucose toxicity and inability of Bacteroides ruminicola to regulate glucose transport and utilization. Appl Environ Microbiol. 1992 Jun;58(6):2040–2045. doi: 10.1128/aem.58.6.2040-2045.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Russell J. B. Glucose toxicity in Prevotella ruminicola: methylglyoxal accumulation and its effect on membrane physiology. Appl Environ Microbiol. 1993 Sep;59(9):2844–2850. doi: 10.1128/aem.59.9.2844-2850.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Saraste M., Sibbald P. R., Wittinghofer A. The P-loop--a common motif in ATP- and GTP-binding proteins. Trends Biochem Sci. 1990 Nov;15(11):430–434. doi: 10.1016/0968-0004(90)90281-f. [DOI] [PubMed] [Google Scholar]
  22. Smith C. J., Hespell R. B., Bryant M. P. Ammonia assimilation and glutamate formation in the anaerobe Selenomonas ruminantium. J Bacteriol. 1980 Feb;141(2):593–602. doi: 10.1128/jb.141.2.593-602.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Strobel H. J. Vitamin B12-dependent propionate production by the ruminal bacterium Prevotella ruminicola 23. Appl Environ Microbiol. 1992 Jul;58(7):2331–2333. doi: 10.1128/aem.58.7.2331-2333.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Walker J. E., Saraste M., Runswick M. J., Gay N. J. Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J. 1982;1(8):945–951. doi: 10.1002/j.1460-2075.1982.tb01276.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Wallace R. J., McKain N. Analysis of peptide metabolism by ruminal microorganisms. Appl Environ Microbiol. 1989 Sep;55(9):2372–2376. doi: 10.1128/aem.55.9.2372-2376.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Weisburg W. G., Oyaizu Y., Oyaizu H., Woese C. R. Natural relationship between bacteroides and flavobacteria. J Bacteriol. 1985 Oct;164(1):230–236. doi: 10.1128/jb.164.1.230-236.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Yamamoto I., Abe A., Ishimoto M. Properties of glutamate dehydrogenase purified from Bacteroides fragilis. J Biochem. 1987 Jun;101(6):1391–1397. doi: 10.1093/oxfordjournals.jbchem.a122008. [DOI] [PubMed] [Google Scholar]
  28. Yamamoto I., Saito H., Ishimoto M. Regulation of synthesis and reversible inactivation in vivo of dual coenzyme-specific glutamate dehydrogenase in Bacteroides fragilis. J Gen Microbiol. 1987 Oct;133(10):2773–2780. doi: 10.1099/00221287-133-10-2773. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES