Abstract
We report an improvement of a published procedure using Escherichia coli to synthesize 14C-labeled trehalose from [14C]glucose (B. Brand and W. Boos, Appl. Environ. Microbiol. 55:2414-2415, 1989). Instead of inducing the expression of the trehalose-synthesizing enzymes encoded by the chromosomal genes otsAB by high osmolarity, we now induce their expression from a plasmid under normal growth conditions by the addition of IPTG (isopropyl-beta-D-thiogalactopyranoside). Instead of using a pgi zwf double mutant to prevent glucose utilization, we use a pgi::Tn10 insertion only. In addition to being defective in treA, which encodes a periplasmic trehalase, the strain is now also defective in treF, which encodes a newly discovered cytoplasmic trehalase. This strain is genetically stable; it has no growth defects; and after induction with IPTG, it will transform [14C]glucose to [14C]trehalose in minimal medium without any carbon source under aerobic conditions at a rate of 3 nmol/min/10(9) cells. With the improved method, the overall yield of trehalose from glucose is about 80% and the process takes place without dilution of the specific radioactivity of the glucose residues. The accumulated trehalose is extracted from the bacteria by 70% hot ethanol and can easily be purified radiochemically by chromatographic techniques.
Full Text
The Full Text of this article is available as a PDF (385.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Boos W., Ehmann U., Bremer E., Middendorf A., Postma P. Trehalase of Escherichia coli. Mapping and cloning of its structural gene and identification of the enzyme as a periplasmic protein induced under high osmolarity growth conditions. J Biol Chem. 1987 Sep 25;262(27):13212–13218. [PubMed] [Google Scholar]
- Boos W., Ehmann U., Forkl H., Klein W., Rimmele M., Postma P. Trehalose transport and metabolism in Escherichia coli. J Bacteriol. 1990 Jun;172(6):3450–3461. doi: 10.1128/jb.172.6.3450-3461.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boyd D., Manoil C., Beckwith J. Determinants of membrane protein topology. Proc Natl Acad Sci U S A. 1987 Dec;84(23):8525–8529. doi: 10.1073/pnas.84.23.8525. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brand B., Boos W. Convenient preparative synthesis of [14C]trehalose from [14C]glucose by intact Escherichia coli cells. Appl Environ Microbiol. 1989 Sep;55(9):2414–2415. doi: 10.1128/aem.55.9.2414-2415.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Böhringer J., Fischer D., Mosler G., Hengge-Aronis R. UDP-glucose is a potential intracellular signal molecule in the control of expression of sigma S and sigma S-dependent genes in Escherichia coli. J Bacteriol. 1995 Jan;177(2):413–422. doi: 10.1128/jb.177.2.413-422.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hengge-Aronis R., Klein W., Lange R., Rimmele M., Boos W. Trehalose synthesis genes are controlled by the putative sigma factor encoded by rpoS and are involved in stationary-phase thermotolerance in Escherichia coli. J Bacteriol. 1991 Dec;173(24):7918–7924. doi: 10.1128/jb.173.24.7918-7924.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kaasen I., Falkenberg P., Styrvold O. B., Strøm A. R. Molecular cloning and physical mapping of the otsBA genes, which encode the osmoregulatory trehalose pathway of Escherichia coli: evidence that transcription is activated by katF (AppR) J Bacteriol. 1992 Feb;174(3):889–898. doi: 10.1128/jb.174.3.889-898.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kaasen I., McDougall J., Strøm A. R. Analysis of the otsBA operon for osmoregulatory trehalose synthesis in Escherichia coli and homology of the OtsA and OtsB proteins to the yeast trehalose-6-phosphate synthase/phosphatase complex. Gene. 1994 Jul 22;145(1):9–15. doi: 10.1016/0378-1119(94)90316-6. [DOI] [PubMed] [Google Scholar]
- Klein W., Horlacher R., Boos W. Molecular analysis of treB encoding the Escherichia coli enzyme II specific for trehalose. J Bacteriol. 1995 Jul;177(14):4043–4052. doi: 10.1128/jb.177.14.4043-4052.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Larsen P. I., Sydnes L. K., Landfald B., Strøm A. R. Osmoregulation in Escherichia coli by accumulation of organic osmolytes: betaines, glutamic acid, and trehalose. Arch Microbiol. 1987 Feb;147(1):1–7. doi: 10.1007/BF00492896. [DOI] [PubMed] [Google Scholar]
- Leslie S. B., Israeli E., Lighthart B., Crowe J. H., Crowe L. M. Trehalose and sucrose protect both membranes and proteins in intact bacteria during drying. Appl Environ Microbiol. 1995 Oct;61(10):3592–3597. doi: 10.1128/aem.61.10.3592-3597.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Preiss J., Romeo T. Molecular biology and regulatory aspects of glycogen biosynthesis in bacteria. Prog Nucleic Acid Res Mol Biol. 1994;47:299–329. doi: 10.1016/s0079-6603(08)60255-x. [DOI] [PubMed] [Google Scholar]
- Rimmele M., Boos W. Trehalose-6-phosphate hydrolase of Escherichia coli. J Bacteriol. 1994 Sep;176(18):5654–5664. doi: 10.1128/jb.176.18.5654-5664.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stambuk B. U., Crowe J. H., Crowe L. M., Panek A. D., de Araujo P. S. A dependable method for the synthesis of [14C]trehalose. Anal Biochem. 1993 Jul;212(1):150–153. doi: 10.1006/abio.1993.1305. [DOI] [PubMed] [Google Scholar]