Abstract
This article provides information about peroxisomal fatty acid metabolism in the yeast Pichia guilliermondii. The existence of inducible mitochondrial carnitine palmitoyltransferase and peroxisomal carnitine octanoyl-transferase activities was demonstrated after culture of this yeast in a medium containing methyl oleate. The subcellular sites and induction patterns were studied. The inhibition of carnitine octanoyl- and palmitoyl-transferases by chlorpromazine to a large extent prevented the otherwise observed metabolism-dependent inactivation of thiolase by 2-bromofatty acids in vivo. We concluded that the metabolism of long- and medium-chain fatty acids in the peroxisome of this yeast involved carnitine intermediates.
Full Text
The Full Text of this article is available as a PDF (275.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
- Buechler K. F., Lowenstein J. M. The involvement of carnitine intermediates in peroxisomal fatty acid oxidation: a study with 2-bromofatty acids. Arch Biochem Biophys. 1990 Sep;281(2):233–238. doi: 10.1016/0003-9861(90)90437-4. [DOI] [PubMed] [Google Scholar]
- Kawamoto S., Nozaki C., Tanaka A., Fukui S. Fatty acid beta-oxidation system in microbodies of n-alkane-grown Candida tropicalis. Eur J Biochem. 1978 Feb;83(2):609–613. doi: 10.1111/j.1432-1033.1978.tb12130.x. [DOI] [PubMed] [Google Scholar]
- Lazarow P. B. Assay of peroxisomal beta-oxidation of fatty acids. Methods Enzymol. 1981;72:315–319. doi: 10.1016/s0076-6879(81)72021-4. [DOI] [PubMed] [Google Scholar]
- Lazarow P. B., De Duve C. A fatty acyl-CoA oxidizing system in rat liver peroxisomes; enhancement by clofibrate, a hypolipidemic drug. Proc Natl Acad Sci U S A. 1976 Jun;73(6):2043–2046. doi: 10.1073/pnas.73.6.2043. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leighton F., Pérsico R., Necochea C. Peroxisomal fatty acid oxidation is selectively inhibited by phenothiazines in isolated hepatocytes. Biochem Biophys Res Commun. 1984 Apr 30;120(2):505–511. doi: 10.1016/0006-291x(84)91283-x. [DOI] [PubMed] [Google Scholar]
- Mannaerts G. P., Debeer L. J., Thomas J., De Schepper P. J. Mitochondrial and peroxisomal fatty acid oxidation in liver homogenates and isolated hepatocytes from control and clofibrate-treated rats. J Biol Chem. 1979 Jun 10;254(11):4585–4595. [PubMed] [Google Scholar]
- Miyazawa S., Ozasa H., Osumi T., Hashimoto T. Purification and properties of carnitine octanoyltransferase and carnitine palmitoyltransferase from rat liver. J Biochem. 1983 Aug;94(2):529–542. doi: 10.1093/oxfordjournals.jbchem.a134384. [DOI] [PubMed] [Google Scholar]
- Moreno de la Garza M., Schultz-Borchard U., Crabb J. W., Kunau W. H. Peroxisomal beta-oxidation system of Candida tropicalis. Purification of a multifunctional protein possessing enoyl-CoA hydratase, 3-hydroxyacyl-CoA dehydrogenase and 3-hydroxyacyl-CoA epimerase activities. Eur J Biochem. 1985 Apr 15;148(2):285–291. doi: 10.1111/j.1432-1033.1985.tb08837.x. [DOI] [PubMed] [Google Scholar]
- Nicolay K., Veenhuis M., Douma A. C., Harder W. A 31P NMR study of the internal pH of yeast peroxisomes. Arch Microbiol. 1987 Feb;147(1):37–41. doi: 10.1007/BF00492902. [DOI] [PubMed] [Google Scholar]
- OKUI S., UCHIYAMA M., MIZUGAKI M. METABOLISM OF HYDROXY FATTY ACIDS. II. INTERMEDIATES OF THE OXIDATIVE BREAKDOWN OF RICINOLEIC ACID BY GENUS CANDIDA. J Biochem. 1963 Dec;54:536–540. doi: 10.1093/oxfordjournals.jbchem.a127827. [DOI] [PubMed] [Google Scholar]
- Paul H. S., Sekas G., Adibi S. A. Carnitine biosynthesis in hepatic peroxisomes. Demonstration of gamma-butyrobetaine hydroxylase activity. Eur J Biochem. 1992 Feb 1;203(3):599–605. doi: 10.1111/j.1432-1033.1992.tb16589.x. [DOI] [PubMed] [Google Scholar]
- Raaka B. M., Lowenstein J. M. Inhibition of fatty acid oxidation by 2-bromooctanoate. Evidence for the enzymatic formation of 2-bromo-3-ketooctanoyl coenzyme A and the inhibition of 3-ketothiolase. J Biol Chem. 1979 Jul 25;254(14):6755–6762. [PubMed] [Google Scholar]
- Schäfer J., Turnbull D. M., Reichmann H. A rapid fluorometric method for the determination of carnitine palmitoyltransferase. Anal Biochem. 1993 Feb 15;209(1):53–56. doi: 10.1006/abio.1993.1081. [DOI] [PubMed] [Google Scholar]
- Singer T. P., Oestreicher G., Hogue P. Regulation of Succinate Dehyrogenase in Higher Plants: I. Some General Characteristics of the Membrane-bound Enzyme. Plant Physiol. 1973 Dec;52(6):616–621. doi: 10.1104/pp.52.6.616. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thomas J., Debeer L. J., De Schepper P. J., Mannaerts G. P. Factors influencing palmitoyl-CoA oxidation by rat liver peroxisomal fractions. Substrate concentration, organelle integrity and ATP. Biochem J. 1980 Sep 15;190(3):485–494. doi: 10.1042/bj1900485. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vamecq J. Chlorpromazine and carnitine-dependency of rat liver peroxisomal beta-oxidation of long-chain fatty acids. Biochem J. 1987 Feb 1;241(3):783–791. doi: 10.1042/bj2410783. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Van Veldhoven P., Debeer L. J., Mannaerts G. P. Water- and solute-accessible spaces of purified peroxisomes. Evidence that peroxisomes are permeable to NAD+. Biochem J. 1983 Mar 15;210(3):685–693. doi: 10.1042/bj2100685. [DOI] [PMC free article] [PubMed] [Google Scholar]