Abstract
We describe the synthesis of two new substrates for the detection of beta-galactosidase and evaluate their performance in comparison with that of 5-bromo-4-chloro-3-indolyl-beta-D-galactopyranoside (X-Gal). Of 171 Enterobacteriaceae strains that were able to hydrolyze X-Gal, 166 (97.1%) also hydrolyzed cyclohexenoesculetin-beta-D-galactoside whereas only 96 (56.1%) showed evidence of hydrolysis of 8-hydroxyquinoline-beta-D-galactoside. No false-positive results were observed with either substrate.
Full Text
The Full Text of this article is available as a PDF (514.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ALBERT A., GIBSON M. I., RUBBO S. D. The influence of chemical constitution on antibacterial activity. VI. The bactericidal action of 8-hydroxyquinoline (oxine). Br J Exp Pathol. 1953 Apr;34(2):119–130. [PMC free article] [PubMed] [Google Scholar]
- Berg J. D., Fiksdal L. Rapid detection of total and fecal coliforms in water by enzymatic hydrolysis of 4-methylumbelliferone-beta-D-galactoside. Appl Environ Microbiol. 1988 Aug;54(8):2118–2122. doi: 10.1128/aem.54.8.2118-2122.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dalet F., Segovia T. Evaluation of a new agar in Uricult-Trio for rapid detection of Escherichia coli in urine. J Clin Microbiol. 1995 May;33(5):1395–1398. doi: 10.1128/jcm.33.5.1395-1398.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- James A. L., Yeoman P. Detection of specific bacterial enzymes by high contrast metal chelate formation. Part I. 8-Hydroxyquinoline-beta-D-glucoside, an alternative to aesculin in the differentiation of members of the family Enterobacteriaceae. Zentralbl Bakteriol Mikrobiol Hyg A. 1987 Dec;267(2):188–193. doi: 10.1016/s0176-6724(87)80004-4. [DOI] [PubMed] [Google Scholar]
- James A. L., Yeoman P. Detection of specific bacterial enzymes by high contrast metal chelate formation. Part II. Specific detection of Escherichia coli on multipoint-inoculated plates using 8-hydroxyquinoline-beta-D-glucuronide. Zentralbl Bakteriol Mikrobiol Hyg A. 1988 Jan;267(3):316–321. doi: 10.1016/s0176-6724(88)80047-6. [DOI] [PubMed] [Google Scholar]
- Kodaka H., Ishikawa M., Iwata M., Kashitani F., Mizuochi S., Yamaguchi K. Evaluation of new medium with chromogenic substrates for members of the family Enterobacteriaceae in urine samples. J Clin Microbiol. 1995 Jan;33(1):199–201. doi: 10.1128/jcm.33.1.199-201.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOWE G. H. The rapid detection of lactose fermentation in paracolon organisms by the demonstration of beta-D-galactosidase. J Med Lab Technol. 1962 Jan;19:21–25. [PubMed] [Google Scholar]
- Manafi M., Kneifel W., Bascomb S. Fluorogenic and chromogenic substrates used in bacterial diagnostics. Microbiol Rev. 1991 Sep;55(3):335–348. doi: 10.1128/mr.55.3.335-348.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Plovins A., Alvarez A. M., Ibañez M., Molina M., Nombela C. Use of fluorescein-di-beta-D-galactopyranoside (FDG) and C12-FDG as substrates for beta-galactosidase detection by flow cytometry in animal, bacterial, and yeast cells. Appl Environ Microbiol. 1994 Dec;60(12):4638–4641. doi: 10.1128/aem.60.12.4638-4641.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]