Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1996 Oct;62(10):3894–3896. doi: 10.1128/aem.62.10.3894-3896.1996

A glycerol-3-phosphate dehydrogenase-deficient mutant of Saccharomyces cerevisiae expressing the heterologous XYL1 gene.

G Lidén 1, M Walfridsson 1, R Ansell 1, M Anderlund 1, L Adler 1, B Hahn-Hägerdal 1
PMCID: PMC168203  PMID: 8837449

Abstract

The gene XYL1, encoding a xylose reductase, from Pichia stipitis was transformed into a mutant of Saccharomyces cerevisiae incapable of glycerol production because of deletion of the genes GPD1 and GPD2. The transformed strain was capable of anaerobic glucose conversion in the presence of added xylose, indicating that the xylose reductase reaction can fulfill the role of the glycerol-3-phosphate dehydrogenase reaction as a redox sink. The specific xylitol production rate obtained was 0.38 g g-1 h-1.

Full Text

The Full Text of this article is available as a PDF (295.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Busturia A., Lagunas R. Catabolite inactivation of the glucose transport system in Saccharomyces cerevisiae. J Gen Microbiol. 1986 Feb;132(2):379–385. doi: 10.1099/00221287-132-2-379. [DOI] [PubMed] [Google Scholar]
  2. Eriksson P., André L., Ansell R., Blomberg A., Adler L. Cloning and characterization of GPD2, a second gene encoding sn-glycerol 3-phosphate dehydrogenase (NAD+) in Saccharomyces cerevisiae, and its comparison with GPD1. Mol Microbiol. 1995 Jul;17(1):95–107. doi: 10.1111/j.1365-2958.1995.mmi_17010095.x. [DOI] [PubMed] [Google Scholar]
  3. Hallborn J., Gorwa M. F., Meinander N., Penttilä M., Keränen S., Hahn-Hägerdal B. The influence of cosubstrate and aeration on xylitol formation by recombinant Saccharomyces cerevisiae expressing the XYL1 gene. Appl Microbiol Biotechnol. 1994 Nov;42(2-3):326–333. doi: 10.1007/BF00902737. [DOI] [PubMed] [Google Scholar]
  4. Hallborn J., Walfridsson M., Airaksinen U., Ojamo H., Hahn-Hägerdal B., Penttilä M., Keräsnen S. Xylitol production by recombinant Saccharomyces cerevisiae. Biotechnology (N Y) 1991 Nov;9(11):1090–1095. doi: 10.1038/nbt1191-1090. [DOI] [PubMed] [Google Scholar]
  5. Kötter P., Amore R., Hollenberg C. P., Ciriacy M. Isolation and characterization of the Pichia stipitis xylitol dehydrogenase gene, XYL2, and construction of a xylose-utilizing Saccharomyces cerevisiae transformant. Curr Genet. 1990 Dec;18(6):493–500. doi: 10.1007/BF00327019. [DOI] [PubMed] [Google Scholar]
  6. Larsson K., Ansell R., Eriksson P., Adler L. A gene encoding sn-glycerol 3-phosphate dehydrogenase (NAD+) complements an osmosensitive mutant of Saccharomyces cerevisiae. Mol Microbiol. 1993 Dec;10(5):1101–1111. doi: 10.1111/j.1365-2958.1993.tb00980.x. [DOI] [PubMed] [Google Scholar]
  7. Meinander N., Zacchi G., Hahn-Hägerdal B. A heterologous reductase affects the redox balance of recombinant Saccharomyces cerevisiae. Microbiology. 1996 Jan;142(Pt 1):165–172. doi: 10.1099/13500872-142-1-165. [DOI] [PubMed] [Google Scholar]
  8. Mellor J., Dobson M. J., Roberts N. A., Tuite M. F., Emtage J. S., White S., Lowe P. A., Patel T., Kingsman A. J., Kingsman S. M. Efficient synthesis of enzymatically active calf chymosin in Saccharomyces cerevisiae. Gene. 1983 Sep;24(1):1–14. doi: 10.1016/0378-1119(83)90126-9. [DOI] [PubMed] [Google Scholar]
  9. Nordström K. Yeast growth and glycerol formation. Acta Chem Scand. 1966;20(4):1016–1025. doi: 10.3891/acta.chem.scand.20-1016. [DOI] [PubMed] [Google Scholar]
  10. Schiestl R. H., Gietz R. D. High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier. Curr Genet. 1989 Dec;16(5-6):339–346. doi: 10.1007/BF00340712. [DOI] [PubMed] [Google Scholar]
  11. Takuma S., Nakashima N., Tantirungkij M., Kinoshita S., Okada H., Seki T., Yoshida T. Isolation of xylose reductase gene of Pichia stipitis and its expression in Saccharomyces cerevisiae. Appl Biochem Biotechnol. 1991 Spring;28-29:327–340. doi: 10.1007/BF02922612. [DOI] [PubMed] [Google Scholar]
  12. Thestrup H. N., Hahn-Hägerdal B. Xylitol formation and reduction equivalent generation during anaerobic xylose conversion with glucose as cosubstrate in recombinant Saccharomyces cerevisiae expressing the xyl1 gene. Appl Environ Microbiol. 1995 May;61(5):2043–2045. doi: 10.1128/aem.61.5.2043-2045.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Verduyn C., Postma E., Scheffers W. A., Van Dijken J. P. Effect of benzoic acid on metabolic fluxes in yeasts: a continuous-culture study on the regulation of respiration and alcoholic fermentation. Yeast. 1992 Jul;8(7):501–517. doi: 10.1002/yea.320080703. [DOI] [PubMed] [Google Scholar]
  14. Verduyn C., Postma E., Scheffers W. A., van Dijken J. P. Physiology of Saccharomyces cerevisiae in anaerobic glucose-limited chemostat cultures. J Gen Microbiol. 1990 Mar;136(3):395–403. doi: 10.1099/00221287-136-3-395. [DOI] [PubMed] [Google Scholar]
  15. Verduyn C., Van Kleef R., Frank J., Schreuder H., Van Dijken J. P., Scheffers W. A. Properties of the NAD(P)H-dependent xylose reductase from the xylose-fermenting yeast Pichia stipitis. Biochem J. 1985 Mar 15;226(3):669–677. doi: 10.1042/bj2260669. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES