Skip to main content
American Journal of Human Genetics logoLink to American Journal of Human Genetics
. 1993 May;52(5):981–986.

Molecular topography of the secondary constriction region (qh) of human chromosome 9 with an unusual euchromatic band.

R S Verma 1, S Luke 1, J P Brennan 1, T Mathews 1, R A Conte 1, M J Macera 1
PMCID: PMC1682060  PMID: 8488847

Abstract

Heterochromatin confined to pericentromeric (c) and secondary constriction (qh) regions plays a major role in morphological variation of chromosome 9, because of its size and affinity for pericentric inversion. Consequently, pairing at pachytene may lead to some disturbances between homologous chromosomes having such extreme variations and may result in abnormalities involving bands adjacent to the qh region. We encountered such a case, where a G-positive band has originated de novo, suggesting a maternal origin from the chromosome 9 that has had a complete pericentric inversion. In previously reported cases, the presence of an extra G-positive band within the 9qh region has been familial, and in the majority of those cases it was not associated with any clinical consequences. Therefore, this anomaly has been referred to as a "rare" variant. The qh region consists of a mixture of various tandemly repeated DNA sequences, and routine banding techniques have failed to characterize the origin of this extra genetic material. By the chromosome in situ suppression hybridization technique using whole chromosome paint, the probe annealed with the extra G-band, suggesting a euchromatic origin from chromosome 9, presumably band p12. By the fluorescence in situ hybridization technique using alpha- and beta-satellite probes, the dicentric nature was further revealed, supporting the concept of unequal crossing-over during maternal meiosis I, which could account for a duplication of the h region. The G-positive band most likely became genetically inert when it was sandwiched between two blocks of heterochromatin, resulting in a phenotypically normal child. Therefore, an earlier hypothesis, suggesting its origin from heterochromatin through so-called euchromatinization, is refuted here.(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
981

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ashley T. G-band position effects on meiotic synapsis and crossing over. Genetics. 1988 Feb;118(2):307–317. doi: 10.1093/genetics/118.2.307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ausio J. Structure and dynamics of transcriptionally active chromatin. J Cell Sci. 1992 May;102(Pt 1):1–5. doi: 10.1242/jcs.102.1.1. [DOI] [PubMed] [Google Scholar]
  3. Babu A., Agarwal A. K., Verma R. S. A new approach in recognition of heterochromatic regions of human chromosomes by means of restriction endonucleases. Am J Hum Genet. 1988 Jan;42(1):60–65. [PMC free article] [PubMed] [Google Scholar]
  4. Babu A., Verma R. S. Chromosome structure: euchromatin and heterochromatin. Int Rev Cytol. 1987;108:1–60. doi: 10.1016/s0074-7696(08)61435-7. [DOI] [PubMed] [Google Scholar]
  5. Berg J. M., Gardner H. A., Gardner R. J., Goh E. G., Markovic V. D., Simpson N. E., Worton R. G. Dic(21;21) in a Down's syndrome child with an unusual chromosome 9 variant in the mother. J Med Genet. 1980 Apr;17(2):144–148. doi: 10.1136/jmg.17.2.144. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Burk R. D., Szabo P., O'Brien S., Nash W. G., Yu L., Smith K. D. Organization and chromosomal specificity of autosomal homologs of human Y chromosome repeated DNA. Chromosoma. 1985;92(3):225–233. doi: 10.1007/BF00348698. [DOI] [PubMed] [Google Scholar]
  7. Bühler E. Clinical and cytological aspects of sex chromosome activity. Hereditas. 1977;86(1):63–74. doi: 10.1111/j.1601-5223.1977.tb01213.x. [DOI] [PubMed] [Google Scholar]
  8. Cattanach B. M. Position effect variegation in the mouse. Genet Res. 1974 Jun;23(3):291–306. doi: 10.1017/s0016672300014932. [DOI] [PubMed] [Google Scholar]
  9. Docherty Z., Hultén M. A. Extra euchromatic band in the qh region of chromosome 9. J Med Genet. 1985 Apr;22(2):156–157. doi: 10.1136/jmg.22.2.156. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Donlon T. A., Magenis R. E. Structural organization of the heterochromatic region of human chromosome 9. Chromosoma. 1981;84(3):353–363. doi: 10.1007/BF00286025. [DOI] [PubMed] [Google Scholar]
  11. Earnshaw W. C., Ratrie H., 3rd, Stetten G. Visualization of centromere proteins CENP-B and CENP-C on a stable dicentric chromosome in cytological spreads. Chromosoma. 1989 Jun;98(1):1–12. doi: 10.1007/BF00293329. [DOI] [PubMed] [Google Scholar]
  12. Felsenfeld G. Chromatin as an essential part of the transcriptional mechanism. Nature. 1992 Jan 16;355(6357):219–224. doi: 10.1038/355219a0. [DOI] [PubMed] [Google Scholar]
  13. Fowler C., Drinkwater R., Skinner J., Burgoyne L. Human satellite-III DNA: an example of a "macrosatellite" polymorphism. Hum Genet. 1988 Jul;79(3):265–272. doi: 10.1007/BF00366249. [DOI] [PubMed] [Google Scholar]
  14. Fowler J. C., Burgoyne L. A., Baker E. G., Ringenbergs M. L., Callen D. F. Human satellite III DNA: genomic location and sequence homogeneity of the TaqI-deficient polymorphic sequences. Chromosoma. 1989 Oct;98(4):266–272. doi: 10.1007/BF00327312. [DOI] [PubMed] [Google Scholar]
  15. Greig G. M., Willard H. F. Beta satellite DNA: characterization and localization of two subfamilies from the distal and proximal short arms of the human acrocentric chromosomes. Genomics. 1992 Mar;12(3):573–580. doi: 10.1016/0888-7543(92)90450-7. [DOI] [PubMed] [Google Scholar]
  16. Grunstein M. Histones as regulators of genes. Sci Am. 1992 Oct;267(4):68–74B. doi: 10.1038/scientificamerican1092-68. [DOI] [PubMed] [Google Scholar]
  17. Hansmann I. Structural variability of human chromosome 9 in relation to its evolution. Hum Genet. 1976 Mar 12;31(3):247–262. doi: 10.1007/BF00270855. [DOI] [PubMed] [Google Scholar]
  18. Hoo J. J. A new chromosome 9 variant: an extra band within the 9qh region. Clin Genet. 1992 Mar;41(3):157–158. doi: 10.1111/j.1399-0004.1992.tb03654.x. [DOI] [PubMed] [Google Scholar]
  19. Houle D., Hoffmaster D. K., Assimacopoulos S., Charlesworth B. The genomic mutation rate for fitness in Drosophila. Nature. 1992 Sep 3;359(6390):58–60. doi: 10.1038/359058a0. [DOI] [PubMed] [Google Scholar]
  20. Jalal S. M., Kukolich M. K., Garcia M., Day D. W. Euchromatic 9q + heteromorphism in a family. Am J Med Genet. 1990 Sep;37(1):155–156. doi: 10.1002/ajmg.1320370135. [DOI] [PubMed] [Google Scholar]
  21. Kellum R., Schedl P. A position-effect assay for boundaries of higher order chromosomal domains. Cell. 1991 Mar 8;64(5):941–950. doi: 10.1016/0092-8674(91)90318-s. [DOI] [PubMed] [Google Scholar]
  22. Kornberg R. D., Lorch Y. Chromatin structure and transcription. Annu Rev Cell Biol. 1992;8:563–587. doi: 10.1146/annurev.cb.08.110192.003023. [DOI] [PubMed] [Google Scholar]
  23. Lucas J. N., Tenjin T., Straume T., Pinkel D., Moore D., 2nd, Litt M., Gray J. W. Rapid human chromosome aberration analysis using fluorescence in situ hybridization. Int J Radiat Biol. 1989 Jul;56(1):35–44. doi: 10.1080/09553008914551161. [DOI] [PubMed] [Google Scholar]
  24. Luke S., Verma R. S., Conte R. A., Mathews T. Molecular characterization of the secondary constriction region (qh) of human chromosome 9 with pericentric inversion. J Cell Sci. 1992 Dec;103(Pt 4):919–923. doi: 10.1242/jcs.103.4.919. [DOI] [PubMed] [Google Scholar]
  25. Madan K. An extra band in human 9qh+ chromosomes. Hum Genet. 1978 Sep 19;43(3):259–264. doi: 10.1007/BF00278832. [DOI] [PubMed] [Google Scholar]
  26. Masumoto H., Masukata H., Muro Y., Nozaki N., Okazaki T. A human centromere antigen (CENP-B) interacts with a short specific sequence in alphoid DNA, a human centromeric satellite. J Cell Biol. 1989 Nov;109(5):1963–1973. doi: 10.1083/jcb.109.5.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Mathews T., Verma R. S. Enhancement of amniotic fluid cell growth for genetic amniocentesis. Clin Genet. 1991 Sep;40(3):190–193. doi: 10.1111/j.1399-0004.1991.tb03075.x. [DOI] [PubMed] [Google Scholar]
  28. Nakagome Y., Nakahori Y., Mitani K., Matsumoto M. The loss of centromeric heterochromatin from an inactivated centromere of a dicentric chromosome. Jinrui Idengaku Zasshi. 1986 Mar;31(1):21–26. doi: 10.1007/BF01876798. [DOI] [PubMed] [Google Scholar]
  29. Perreault S. D. Chromatin remodeling in mammalian zygotes. Mutat Res. 1992 Dec;296(1-2):43–55. doi: 10.1016/0165-1110(92)90031-4. [DOI] [PubMed] [Google Scholar]
  30. Rocchi M., Archidiacono N., Ward D. C., Baldini A. A human chromosome 9-specific alphoid DNA repeat spatially resolvable from satellite 3 DNA by fluorescent in situ hybridization. Genomics. 1991 Mar;9(3):517–523. doi: 10.1016/0888-7543(91)90419-f. [DOI] [PubMed] [Google Scholar]
  31. Roland B., Chernos J. E., Cox D. M. 9qh+ variant band in two families. Am J Med Genet. 1992 Jan 1;42(1):137–138. doi: 10.1002/ajmg.1320420128. [DOI] [PubMed] [Google Scholar]
  32. Sharma V., Brown D., Smith L., Magenis R. E., Litt M. Dinucleotide repeat polymorphism at the D9S55 locus. Nucleic Acids Res. 1991 Jul 25;19(14):4023–4023. [PMC free article] [PubMed] [Google Scholar]
  33. Singer M. F. Highly repeated sequences in mammalian genomes. Int Rev Cytol. 1982;76:67–112. doi: 10.1016/s0074-7696(08)61789-1. [DOI] [PubMed] [Google Scholar]
  34. Tagarro I., González-Aguilera J. J., Fernández-Peralta A. M. TaqI digestion reveals fractions of satellite DNAs on human chromosomes. Genome. 1991 Apr;34(2):251–254. doi: 10.1139/g91-039. [DOI] [PubMed] [Google Scholar]
  35. Therman E., Sarto G. E., Patau K. Apparently isodicentric but functionally monocentric X chromosome in man. Am J Hum Genet. 1974 Jan;26(1):83–92. [PMC free article] [PubMed] [Google Scholar]
  36. Tkachuk D. C., Pinkel D., Kuo W. L., Weier H. U., Gray J. W. Clinical applications of fluorescence in situ hybridization. Genet Anal Tech Appl. 1991 Apr;8(2):67–74. doi: 10.1016/1050-3862(91)90051-r. [DOI] [PubMed] [Google Scholar]
  37. Verma R. S., Dosik H., Lubs H. A. Size and pericentric inversion heteromorphisms of secondary constriction regions (h) of chromosomes 1, 9, and 16 as detected by CBG technique in Caucasians: classification, frequencies, and incidence. Am J Med Genet. 1978;2(4):331–339. doi: 10.1002/ajmg.1320020403. [DOI] [PubMed] [Google Scholar]
  38. Verma R. S., Luke S. Variations in alphoid DNA sequences escape detection of aneuploidy at interphase by FISH technique. Genomics. 1992 Sep;14(1):113–116. doi: 10.1016/s0888-7543(05)80291-5. [DOI] [PubMed] [Google Scholar]
  39. Verma R. S., Rodriguez J., Dosik H. Chromatin of h regions of human chromosomes at high resolution. Experientia. 1984 Aug 15;40(8):878–879. doi: 10.1007/BF01952006. [DOI] [PubMed] [Google Scholar]
  40. Vianna-Morgante A. M., Rosenberg C. Deletion of the centromere as a mechanism for achieving stability of a dicentric chromosome. Cytogenet Cell Genet. 1986;42(3):119–122. doi: 10.1159/000132263. [DOI] [PubMed] [Google Scholar]
  41. Vogt P. Code domains in tandem repetitive DNA sequence structures. Chromosoma. 1992 Oct;101(10):585–589. doi: 10.1007/BF00360534. [DOI] [PubMed] [Google Scholar]
  42. Webb G. C., Krumins E. J., Eichenbaum S. Z., Voullaire L. E., Earle E., Choó K. H. Non C-banding variants in some normal families might be homogeneously staining regions. Hum Genet. 1989 Apr;82(1):59–62. doi: 10.1007/BF00288273. [DOI] [PubMed] [Google Scholar]
  43. Willard H. F. Centromeres of mammalian chromosomes. Trends Genet. 1990 Dec;6(12):410–416. doi: 10.1016/0168-9525(90)90302-m. [DOI] [PubMed] [Google Scholar]
  44. Willard H. F., Wevrick R., Warburton P. E. Human centromere structure: organization and potential role of alpha satellite DNA. Prog Clin Biol Res. 1989;318:9–18. [PubMed] [Google Scholar]
  45. Wilson C., Bellen H. J., Gehring W. J. Position effects on eukaryotic gene expression. Annu Rev Cell Biol. 1990;6:679–714. doi: 10.1146/annurev.cb.06.110190.003335. [DOI] [PubMed] [Google Scholar]
  46. Yen T. J., Li G., Schaar B. T., Szilak I., Cleveland D. W. CENP-E is a putative kinetochore motor that accumulates just before mitosis. Nature. 1992 Oct 8;359(6395):536–539. doi: 10.1038/359536a0. [DOI] [PubMed] [Google Scholar]

Articles from American Journal of Human Genetics are provided here courtesy of American Society of Human Genetics

RESOURCES