Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1996 Nov;62(11):3948–3953. doi: 10.1128/aem.62.11.3948-3953.1996

Direct selection of cloned DNA in Bacillus subtilis based on sucrose-induced lethality.

M G Bramucci 1, V Nagarajan 1
PMCID: PMC168212  PMID: 8899981

Abstract

Expression of the Bacillus subtilis or Bacillus amyloliquefaciens sacB gene in the presence of sucrose is lethal for a variety of bacteria. Sucrose-induced lethality can be used to select for inactivation of sacB by insertion of heterologous DNA in sensitive bacteria. This procedure has not been applicable to B. subtilis heretofore because expression of wild-type sacB is not detrimental to B. subtilis. The W29 mutation in the B. amyloliquefaciens sacB gene interferes with processing of the levansucrase signal peptide. The W29 mutation does not affect growth of B. subtilis in media lacking sucrose. However, this mutation inhibited growth of B. subtilis in media containing sucrose. Inactivation of the fructose polymerase activity encoded by sacB indicated that levan production was essential for sucrose-induced lethality. As a result, it was possible to select for cloned DNA in B. subtilis by insertional inactivation of the mutant sacB gene located on a multicopy plasmid vector in medium containing sucrose.

Full Text

The Full Text of this article is available as a PDF (226.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benson A. K., Haldenwang W. G. Regulation of sigma B levels and activity in Bacillus subtilis. J Bacteriol. 1993 Apr;175(8):2347–2356. doi: 10.1128/jb.175.8.2347-2356.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Borchert T. V., Nagarajan V. Effect of signal sequence alterations on export of levansucrase in Bacillus subtilis. J Bacteriol. 1991 Jan;173(1):276–282. doi: 10.1128/jb.173.1.276-282.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cai Y. P., Wolk C. P. Use of a conditionally lethal gene in Anabaena sp. strain PCC 7120 to select for double recombinants and to entrap insertion sequences. J Bacteriol. 1990 Jun;172(6):3138–3145. doi: 10.1128/jb.172.6.3138-3145.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chambert R., Petit-Glatron M. F. Polymerase and hydrolase activities of Bacillus subtilis levansucrase can be separately modulated by site-directed mutagenesis. Biochem J. 1991 Oct 1;279(Pt 1):35–41. doi: 10.1042/bj2790035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. East A. K., Errington J. A new bacteriophage vector for cloning in Bacillus subtilis and the use of phi 105 for protein synthesis in maxicells. Gene. 1989 Sep 1;81(1):35–43. doi: 10.1016/0378-1119(89)90334-x. [DOI] [PubMed] [Google Scholar]
  6. Ferrari F. A., Trach K., LeCoq D., Spence J., Ferrari E., Hoch J. A. Characterization of the spo0A locus and its deduced product. Proc Natl Acad Sci U S A. 1985 May;82(9):2647–2651. doi: 10.1073/pnas.82.9.2647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gay P., Le Coq D., Steinmetz M., Berkelman T., Kado C. I. Positive selection procedure for entrapment of insertion sequence elements in gram-negative bacteria. J Bacteriol. 1985 Nov;164(2):918–921. doi: 10.1128/jb.164.2.918-921.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gay P., Le Coq D., Steinmetz M., Ferrari E., Hoch J. A. Cloning structural gene sacB, which codes for exoenzyme levansucrase of Bacillus subtilis: expression of the gene in Escherichia coli. J Bacteriol. 1983 Mar;153(3):1424–1431. doi: 10.1128/jb.153.3.1424-1431.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gryczan T. J., Dubnau D. Direct selection of recombinant plasmids in Bacillus subtilis. Gene. 1982 Dec;20(3):459–469. doi: 10.1016/0378-1119(82)90215-3. [DOI] [PubMed] [Google Scholar]
  10. Hasnain S., Thomas C. M. Construction of a novel gene bank of Bacillus subtilis using a low copy number vector in Escherichia coli. J Gen Microbiol. 1986 Jul;132(7):1863–1874. doi: 10.1099/00221287-132-7-1863. [DOI] [PubMed] [Google Scholar]
  11. Jäger W., Schäfer A., Kalinowski J., Pühler A. Isolation of insertion elements from gram-positive Brevibacterium, Corynebacterium and Rhodococcus strains using the Bacillus subtilis sacB gene as a positive selection marker. FEMS Microbiol Lett. 1995 Feb 1;126(1):1–6. doi: 10.1111/j.1574-6968.1995.tb07381.x. [DOI] [PubMed] [Google Scholar]
  12. Jäger W., Schäfer A., Pühler A., Labes G., Wohlleben W. Expression of the Bacillus subtilis sacB gene leads to sucrose sensitivity in the gram-positive bacterium Corynebacterium glutamicum but not in Streptomyces lividans. J Bacteriol. 1992 Aug;174(16):5462–5465. doi: 10.1128/jb.174.16.5462-5465.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kamoun S., Tola E., Kamdar H., Kado C. I. Rapid generation of directed and unmarked deletions in Xanthomonas. Mol Microbiol. 1992 Mar;6(6):809–816. doi: 10.1111/j.1365-2958.1992.tb01531.x. [DOI] [PubMed] [Google Scholar]
  14. Kaniga K., Delor I., Cornelis G. R. A wide-host-range suicide vector for improving reverse genetics in gram-negative bacteria: inactivation of the blaA gene of Yersinia enterocolitica. Gene. 1991 Dec 20;109(1):137–141. doi: 10.1016/0378-1119(91)90599-7. [DOI] [PubMed] [Google Scholar]
  15. Lepesant J. A., Lepesant-Kejzlarová J., Pascal M., Kunst F., Billault A., Dedonder R. Identification of the structural gene of levansucrase in Bacillus subtilis Marburg. Mol Gen Genet. 1974 Feb 6;128(3):213–221. doi: 10.1007/BF00267110. [DOI] [PubMed] [Google Scholar]
  16. Nagarajan V., Borchert T. V. Levansucrase: a tool to study protein secretion in Bacillus subtilis. Res Microbiol. 1991 Sep-Oct;142(7-8):787–792. doi: 10.1016/0923-2508(91)90056-g. [DOI] [PubMed] [Google Scholar]
  17. Pelicic V., Reyrat J. M., Gicquel B. Expression of the Bacillus subtilis sacB gene confers sucrose sensitivity on mycobacteria. J Bacteriol. 1996 Feb;178(4):1197–1199. doi: 10.1128/jb.178.4.1197-1199.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Pierce J. C., Sauer B., Sternberg N. A positive selection vector for cloning high molecular weight DNA by the bacteriophage P1 system: improved cloning efficacy. Proc Natl Acad Sci U S A. 1992 Mar 15;89(6):2056–2060. doi: 10.1073/pnas.89.6.2056. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ried J. L., Collmer A. An nptI-sacB-sacR cartridge for constructing directed, unmarked mutations in gram-negative bacteria by marker exchange-eviction mutagenesis. Gene. 1987;57(2-3):239–246. doi: 10.1016/0378-1119(87)90127-2. [DOI] [PubMed] [Google Scholar]
  20. Simon R., Hötte B., Klauke B., Kosier B. Isolation and characterization of insertion sequence elements from gram-negative bacteria by using new broad-host-range, positive selection vectors. J Bacteriol. 1991 Feb;173(4):1502–1508. doi: 10.1128/jb.173.4.1502-1508.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Soutschek-Bauer E., Staudenbauer W. L. Synthesis and secretion of a heat-stable carboxymethylcellulose from Clostridium thermocellum in Bacillus subtilis and Bacillus stearothermophilus. Mol Gen Genet. 1987 Jul;208(3):537–541. doi: 10.1007/BF00328152. [DOI] [PubMed] [Google Scholar]
  22. Steinmetz M., Le Coq D., Djemia H. B., Gay P. Analyse génétique de sacB, gène de structure d'une enzyme secrétée, la lévane-saccharase de Bacillus subtilis Marburg. Mol Gen Genet. 1983;191(1):138–144. doi: 10.1007/BF00330901. [DOI] [PubMed] [Google Scholar]
  23. Tang L. B., Lenstra R., Borchert T. V., Nagarajan V. Isolation and characterization of levansucrase-encoding gene from Bacillus amyloliquefaciens. Gene. 1990 Nov 30;96(1):89–93. doi: 10.1016/0378-1119(90)90345-r. [DOI] [PubMed] [Google Scholar]
  24. Vasantha N., Thompson L. D., Rhodes C., Banner C., Nagle J., Filpula D. Genes for alkaline protease and neutral protease from Bacillus amyloliquefaciens contain a large open reading frame between the regions coding for signal sequence and mature protein. J Bacteriol. 1984 Sep;159(3):811–819. doi: 10.1128/jb.159.3.811-819.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Yudkin M. D. The sigma-like product of sporulation gene spoIIAC of Bacillus subtilis is toxic to Escherichia coli. Mol Gen Genet. 1986 Jan;202(1):55–57. doi: 10.1007/BF00330516. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES