Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1996 Nov;62(11):3978–3984. doi: 10.1128/aem.62.11.3978-3984.1996

Demethylation of dimethylsulfoniopropionate to 3-S-methylmercaptopropionate by marine sulfate-reducing bacteria.

M J van der Maarel 1, M Jansen 1, R Haanstra 1, W G Meijer 1, T A Hansen 1
PMCID: PMC168216  PMID: 8899985

Abstract

The initial step in the anaerobic degradation of the algal osmolyte dimethylsulfoniopropionate (DMSP) in anoxic marine sediments involves either a cleavage to dimethylsulfide and acrylate or a demethylation to 3-S-methylmercaptopropionate. Thus far, only one anaerobic bacterial strain has been shown to carry out the demethylation, namely, Desulfobacterium sp. strain PM4. The aims of the present work were to study how common this property is among certain groups of anaerobic bacteria and to obtain information on the affinities for DMSP of DMSP-demethylating strains. Screening of several pure cultures of sulfate-reducing and acetogenic bacteria showed that Desulfobacterium vacuolatum DSM 3385 and Desulfobacterium niacini DSM 2059 are also able to demethylate DMSP; a very slow demethylation of DMSP was observed with a salt-tolerant strain of Eubacterium limosum. From a 10(5) dilution of intertidal sediment a new marine DMSP-demethylating sulfate-reducing bacterium (strain WN) was isolated. Strain WN was a short, gram-negative, nonmotile rod that grew on betaine, sarcosine, palmitate, H2 plus CO2, and several alcohols, organic acids, and amino acids. Extracts of betaine-grown cells had hydrogenase, formate dehydrogenase, and CO dehydrogenase activities but no alpha-ketoglutarate oxidoreductase activity, indicating the presence of the acetyl coenzyme A-CO dehydrogenase pathway. Analysis of the 16S rRNA gene sequence of strain WN revealed a close relationship with Desulfobacter hydrogenophilus, Desulfobacter latus, and Desulfobacula toluolica. Strain PM4 was shown to group with Desulfobacterium niacini. The K(m) of strain WN for DMSP, as derived from substrate progress curves in cell suspensions, was approximately 10 microM. A similar value was found for D. niacini PM4.

Full Text

The Full Text of this article is available as a PDF (320.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blaut M. Metabolism of methanogens. Antonie Van Leeuwenhoek. 1994;66(1-3):187–208. doi: 10.1007/BF00871639. [DOI] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  3. Chambers S. T., Kunin C. M., Miller D., Hamada A. Dimethylthetin can substitute for glycine betaine as an osmoprotectant molecule for Escherichia coli. J Bacteriol. 1987 Oct;169(10):4845–4847. doi: 10.1128/jb.169.10.4845-4847.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dalsgaard T., Bak F. Nitrate Reduction in a Sulfate-Reducing Bacterium, Desulfovibrio desulfuricans, Isolated from Rice Paddy Soil: Sulfide Inhibition, Kinetics, and Regulation. Appl Environ Microbiol. 1994 Jan;60(1):291–297. doi: 10.1128/aem.60.1.291-297.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Heijthuijsen J. H., Hansen T. A. Betaine fermentation and oxidation by marine desulfuromonas strains. Appl Environ Microbiol. 1989 Apr;55(4):965–969. doi: 10.1128/aem.55.4.965-969.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hensgens C. M., Hagen W. R., Hansen T. A. Purification and characterization of a benzylviologen-linked, tungsten-containing aldehyde oxidoreductase from Desulfovibrio gigas. J Bacteriol. 1995 Nov;177(21):6195–6200. doi: 10.1128/jb.177.21.6195-6200.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kiene R. P., Taylor B. F. Demethylation of dimethylsulfoniopropionate and production of thiols in anoxic marine sediments. Appl Environ Microbiol. 1988 Sep;54(9):2208–2212. doi: 10.1128/aem.54.9.2208-2212.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kiene R. P., Visscher P. T. Production and fate of methylated sulfur compounds from methionine and dimethylsulfoniopropionate in anoxic salt marsh sediments. Appl Environ Microbiol. 1987 Oct;53(10):2426–2434. doi: 10.1128/aem.53.10.2426-2434.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol. 1980 Dec;16(2):111–120. doi: 10.1007/BF01731581. [DOI] [PubMed] [Google Scholar]
  10. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  11. Müller E., Fahlbusch K., Walther R., Gottschalk G. Formation of N,N-Dimethylglycine, Acetic Acid, and Butyric Acid from Betaine by Eubacterium limosum. Appl Environ Microbiol. 1981 Sep;42(3):439–445. doi: 10.1128/aem.42.3.439-445.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. POSTGATE J. A diagnostic reaction of Desulphovibrio desulphuricans. Nature. 1959 Feb 14;183(4659):481–482. doi: 10.1038/183481b0. [DOI] [PubMed] [Google Scholar]
  13. Rabus R., Nordhaus R., Ludwig W., Widdel F. Complete oxidation of toluene under strictly anoxic conditions by a new sulfate-reducing bacterium. Appl Environ Microbiol. 1993 May;59(5):1444–1451. doi: 10.1128/aem.59.5.1444-1451.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Saitou N., Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987 Jul;4(4):406–425. doi: 10.1093/oxfordjournals.molbev.a040454. [DOI] [PubMed] [Google Scholar]
  15. Sharak Genthner B. R., Bryant M. P. Additional characteristics of one-carbon-compound utilization by Eubacterium limosum and Acetobacterium woodii. Appl Environ Microbiol. 1987 Mar;53(3):471–476. doi: 10.1128/aem.53.3.471-476.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. TRUEPER H. G., SCHLEGEL H. G. SULPHUR METABOLISM IN THIORHODACEAE. I. QUANTITATIVE MEASUREMENTS ON GROWING CELLS OF CHROMATIUM OKENII. Antonie Van Leeuwenhoek. 1964;30:225–238. doi: 10.1007/BF02046728. [DOI] [PubMed] [Google Scholar]
  17. Taylor B. F., Gilchrist D. C. New routes for aerobic biodegradation of dimethylsulfoniopropionate. Appl Environ Microbiol. 1991 Dec;57(12):3581–3584. doi: 10.1128/aem.57.12.3581-3584.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Visscher P. T., Taylor B. F. Demethylation of dimethylsulfoniopropionate to 3-mercaptopropionate by an aerobic marine bacterium. Appl Environ Microbiol. 1994 Dec;60(12):4617–4619. doi: 10.1128/aem.60.12.4617-4619.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Wackett L. P., Honek J. F., Begley T. P., Wallace V., Orme-Johnson W. H., Walsh C. T. Substrate analogues as mechanistic probes of methyl-S-coenzyme M reductase. Biochemistry. 1987 Sep 22;26(19):6012–6018. doi: 10.1021/bi00393a010. [DOI] [PubMed] [Google Scholar]
  20. Yancey P. H., Clark M. E., Hand S. C., Bowlus R. D., Somero G. N. Living with water stress: evolution of osmolyte systems. Science. 1982 Sep 24;217(4566):1214–1222. doi: 10.1126/science.7112124. [DOI] [PubMed] [Google Scholar]
  21. de Souza M. P., Yoch D. C. Purification and characterization of dimethylsulfoniopropionate lyase from an alcaligenes-like dimethyl sulfide-producing marine isolate. Appl Environ Microbiol. 1995 Jan;61(1):21–26. doi: 10.1128/aem.61.1.21-26.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. van der Maarel M., Jansen M., Hansen T. A. Methanogenic conversion of 3-s-methylmercaptopropionate to 3-mercaptopropionate. Appl Environ Microbiol. 1995 Jan;61(1):48–51. doi: 10.1128/aem.61.1.48-51.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES