Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1996 Nov;62(11):4019–4025. doi: 10.1128/aem.62.11.4019-4025.1996

Characterization of the gene encoding nitrite reductase and the physiological consequences of its expression in the nondenitrifying Rhizobium "hedysari" strain HCNT1.

A Toffanin 1, Q Wu 1, M Maskus 1, S Caselia 1, H D Abruña 1, J P Shapleigh 1
PMCID: PMC168221  PMID: 8899992

Abstract

Rhizobium "hedysari" HCNT1 is an unclassified rhizobium which contains a nitric oxide-producing nitrite reductase but is apparently incapable of coupling the reduction of nitrite to energy conservation. The gene encoding the nitrite reductase, nirK, has been cloned and sequenced and was found to encode a protein closely related to the copper-containing family of nitrite reductases. Unlike other members of this family, nirK expression in HCNT1 is not dependent on the presence of nitrogen oxides, being dependent only on oxygen concentration. Oxygen respiration of microaerobically grown Nir-deficient cells is not affected by concentrations of nitrite that completely inhibit oxygen respiration in wild-type cells. This loss of sensitivity suggests that the product of nitrite reductase, nitric oxide, is responsible for inhibition of oxygen respiration. By using a newly developed chemically modified electrode to detect nitric oxide, it was found that nitrite reduction by HCNT1 produces significantly higher nitric oxide concentrations than are observed in true denitrifiers. This indicates that nitrite reductase is the only nitrogen oxide reductase active in HCNT1. The capacity to generate such large concentrations of freely diffusible nitric oxide as a consequence of nitrite respiration makes HCNT1 unique among bacteria.

Full Text

The Full Text of this article is available as a PDF (233.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  2. Anthamatten D., Hennecke H. The regulatory status of the fixL- and fixJ-like genes in Bradyrhizobium japonicum may be different from that in Rhizobium meliloti. Mol Gen Genet. 1991 Jan;225(1):38–48. doi: 10.1007/BF00282640. [DOI] [PubMed] [Google Scholar]
  3. Binnerup S. J., Sørensen J. Nitrate and nitrite microgradients in barley rhizosphere as detected by a highly sensitive denitrification bioassay. Appl Environ Microbiol. 1992 Aug;58(8):2375–2380. doi: 10.1128/aem.58.8.2375-2380.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Birnboim H. C., Doly J. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 1979 Nov 24;7(6):1513–1523. doi: 10.1093/nar/7.6.1513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Braun C., Zumft W. G. Marker exchange of the structural genes for nitric oxide reductase blocks the denitrification pathway of Pseudomonas stutzeri at nitric oxide. J Biol Chem. 1991 Dec 5;266(34):22785–22788. [PubMed] [Google Scholar]
  6. Brittain T., Blackmore R., Greenwood C., Thomson A. J. Bacterial nitrite-reducing enzymes. Eur J Biochem. 1992 Nov 1;209(3):793–802. doi: 10.1111/j.1432-1033.1992.tb17350.x. [DOI] [PubMed] [Google Scholar]
  7. Brons H. J., Hagen W. R., Zehnder A. J. Ferrous iron dependent nitric oxide production in nitrate reducing cultures of Escherichia coli. Arch Microbiol. 1991;155(4):341–347. doi: 10.1007/BF00243453. [DOI] [PubMed] [Google Scholar]
  8. Brown G. C., Cooper C. E. Nanomolar concentrations of nitric oxide reversibly inhibit synaptosomal respiration by competing with oxygen at cytochrome oxidase. FEBS Lett. 1994 Dec 19;356(2-3):295–298. doi: 10.1016/0014-5793(94)01290-3. [DOI] [PubMed] [Google Scholar]
  9. Brown G. C. Nitric oxide regulates mitochondrial respiration and cell functions by inhibiting cytochrome oxidase. FEBS Lett. 1995 Aug 7;369(2-3):136–139. doi: 10.1016/0014-5793(95)00763-y. [DOI] [PubMed] [Google Scholar]
  10. Chung C. T., Niemela S. L., Miller R. H. One-step preparation of competent Escherichia coli: transformation and storage of bacterial cells in the same solution. Proc Natl Acad Sci U S A. 1989 Apr;86(7):2172–2175. doi: 10.1073/pnas.86.7.2172. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fenderson F. F., Kumar S., Adman E. T., Liu M. Y., Payne W. J., LeGall J. Amino acid sequence of nitrite reductase: a copper protein from Achromobacter cycloclastes. Biochemistry. 1991 Jul 23;30(29):7180–7185. doi: 10.1021/bi00243a020. [DOI] [PubMed] [Google Scholar]
  12. Fischer H. M. Genetic regulation of nitrogen fixation in rhizobia. Microbiol Rev. 1994 Sep;58(3):352–386. doi: 10.1128/mr.58.3.352-386.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Godden J. W., Turley S., Teller D. C., Adman E. T., Liu M. Y., Payne W. J., LeGall J. The 2.3 angstrom X-ray structure of nitrite reductase from Achromobacter cycloclastes. Science. 1991 Jul 26;253(5018):438–442. doi: 10.1126/science.1862344. [DOI] [PubMed] [Google Scholar]
  14. Goretski J., Hollocher T. C. Trapping of nitric oxide produced during denitrification by extracellular hemoglobin. J Biol Chem. 1988 Feb 15;263(5):2316–2323. [PubMed] [Google Scholar]
  15. Goretski J., Zafiriou O. C., Hollocher T. C. Steady-state nitric oxide concentrations during denitrification. J Biol Chem. 1990 Jul 15;265(20):11535–11538. [PubMed] [Google Scholar]
  16. Hochstein L. I., Tomlinson G. A. The enzymes associated with denitrification. Annu Rev Microbiol. 1988;42:231–261. doi: 10.1146/annurev.mi.42.100188.001311. [DOI] [PubMed] [Google Scholar]
  17. Keen N. T., Tamaki S., Kobayashi D., Trollinger D. Improved broad-host-range plasmids for DNA cloning in gram-negative bacteria. Gene. 1988 Oct 15;70(1):191–197. doi: 10.1016/0378-1119(88)90117-5. [DOI] [PubMed] [Google Scholar]
  18. Koike I., Hattori A. Energy yield of denitrification: an estimate from growth yield in continuous cultures of Pseudomonas denitrificans under nitrate-, nitrite- and oxide-limited conditions. J Gen Microbiol. 1975 May;88(1):11–19. doi: 10.1099/00221287-88-1-11. [DOI] [PubMed] [Google Scholar]
  19. Kokotek W., Lotz W. Construction of a lacZ-kanamycin-resistance cassette, useful for site-directed mutagenesis and as a promoter probe. Gene. 1989 Dec 14;84(2):467–471. doi: 10.1016/0378-1119(89)90522-2. [DOI] [PubMed] [Google Scholar]
  20. Körner H., Zumft W. G. Expression of denitrification enzymes in response to the dissolved oxygen level and respiratory substrate in continuous culture of Pseudomonas stutzeri. Appl Environ Microbiol. 1989 Jul;55(7):1670–1676. doi: 10.1128/aem.55.7.1670-1676.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Maskus M., Pariente F., Wu Q., Toffanin A., Shapleigh J. P., Abruña H. D. Electrocatalytic reduction of nitric oxide at electrodes modified with electropolymerized films of [Cr(v-tpy)2]3+ and their application to cellular NO determinations. Anal Chem. 1996 Sep 15;68(18):3128–3134. doi: 10.1021/ac951063g. [DOI] [PubMed] [Google Scholar]
  22. Mitchell A. M., Manley S. W., Payne E. J., Mortimer R. H. Uptake of thyroxine in the human choriocarcinoma cell line JAR. J Endocrinol. 1995 Aug;146(2):233–238. doi: 10.1677/joe.0.1460233. [DOI] [PubMed] [Google Scholar]
  23. Payne W. J., Grant M. A., Shapleigh J., Hoffman P. Nitrogen oxide reduction in Wolinella succinogenes and Campylobacter species. J Bacteriol. 1982 Nov;152(2):915–918. doi: 10.1128/jb.152.2.915-918.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Penfold R. J., Pemberton J. M. An improved suicide vector for construction of chromosomal insertion mutations in bacteria. Gene. 1992 Sep 1;118(1):145–146. doi: 10.1016/0378-1119(92)90263-o. [DOI] [PubMed] [Google Scholar]
  25. Spiro S. The FNR family of transcriptional regulators. Antonie Van Leeuwenhoek. 1994;66(1-3):23–36. doi: 10.1007/BF00871630. [DOI] [PubMed] [Google Scholar]
  26. Stewart V., Parales J., Jr Identification and expression of genes narL and narX of the nar (nitrate reductase) locus in Escherichia coli K-12. J Bacteriol. 1988 Apr;170(4):1589–1597. doi: 10.1128/jb.170.4.1589-1597.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Ye R. W., Fries M. R., Bezborodnikov S. G., Averill B. A., Tiedje J. M. Characterization of the structural gene encoding a copper-containing nitrite reductase and homology of this gene to DNA of other denitrifiers. Appl Environ Microbiol. 1993 Jan;59(1):250–254. doi: 10.1128/aem.59.1.250-254.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES