Abstract
An isolated bacterium, identified as a new Sphingomonas species, was demonstrated to contain a novel enzymatic pathway which acted on microcystin LR, the most common cyanobacterial cyclic peptide toxin. Degradation of microcystin LR was mediated by at least three intracellular hydrolytic enzymes. The use of classic protease inhibitors allowed (i) the classification of these enzymes into general protease families and (ii) the in vitro accumulation of otherwise transient microcystin LR degradation products. The initial site of hydrolytic cleavage of the parent cyclic peptide by an enzyme that we designate microcystinase is at the 3-amino-9-methoxy-2,6,8-trimethyl-10-phenyl-deca-4,6-dienoic acid (Adda)-Arg peptide bond. Two intermediates of microcystin LR enzymatic degradation have been identified; one is linearized (acyclo-) microcystin LR, NH2-Adda-Glu(iso)-methyldehydroalanine-Ala-Leu-beta-methylas partate-Arg-OH, and the other is the tetrapeptide NH2-Adda-Glu(iso)-methyldehydroalanine-Ala-OH. The intermediate degradation products were less active than the parent cyclic peptide; the observed 50% inhibitory concentrations for crude chicken brain protein phosphatase were 0.6 nM for microcystin LR, 95 nM for linear LR, and 12 nM for the tetrapeptide. These linear peptides were nontoxic to mice at doses up to 250 micrograms/kg. Ring opening of the potent hepatotoxin microcystin LR by bacterial microcystinase effectively renders the compound nontoxic by dramatically reducing the interaction with the target protein phosphatase.
Full Text
The Full Text of this article is available as a PDF (225.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- An J., Carmichael W. W. Use of a colorimetric protein phosphatase inhibition assay and enzyme linked immunosorbent assay for the study of microcystins and nodularins. Toxicon. 1994 Dec;32(12):1495–1507. doi: 10.1016/0041-0101(94)90308-5. [DOI] [PubMed] [Google Scholar]
- Bagu J. R., Sönnichsen F. D., Williams D., Andersen R. J., Sykes B. D., Holmes C. F. Comparison of the solution structures of microcystin-LR and motuporin. Nat Struct Biol. 1995 Feb;2(2):114–116. doi: 10.1038/nsb0295-114. [DOI] [PubMed] [Google Scholar]
- Carmichael W. W. Cyanobacteria secondary metabolites--the cyanotoxins. J Appl Bacteriol. 1992 Jun;72(6):445–459. doi: 10.1111/j.1365-2672.1992.tb01858.x. [DOI] [PubMed] [Google Scholar]
- Falconer I. R., Yeung D. S. Cytoskeletal changes in hepatocytes induced by Microcystis toxins and their relation to hyperphosphorylation of cell proteins. Chem Biol Interact. 1992 Jan;81(1-2):181–196. doi: 10.1016/0009-2797(92)90033-h. [DOI] [PubMed] [Google Scholar]
- Goldberg J., Huang H. B., Kwon Y. G., Greengard P., Nairn A. C., Kuriyan J. Three-dimensional structure of the catalytic subunit of protein serine/threonine phosphatase-1. Nature. 1995 Aug 31;376(6543):745–753. doi: 10.1038/376745a0. [DOI] [PubMed] [Google Scholar]
- Harada K., Matsuura K., Suzuki M., Watanabe M. F., Oishi S., Dahlem A. M., Beasley V. R., Carmichael W. W. Isolation and characterization of the minor components associated with microcystins LR and RR in the cyanobacterium (blue-green algae). Toxicon. 1990;28(1):55–64. doi: 10.1016/0041-0101(90)90006-s. [DOI] [PubMed] [Google Scholar]
- Jones G. J., Bourne D. G., Blakeley R. L., Doelle H. Degradation of the cyanobacterial hepatotoxin microcystin by aquatic bacteria. Nat Toxins. 1994;2(4):228–235. doi: 10.1002/nt.2620020412. [DOI] [PubMed] [Google Scholar]
- Krishnamurthy T., Carmichael W. W., Sarver E. W. Toxic peptides from freshwater cyanobacteria (blue-green algae). I. Isolation, purification and characterization of peptides from Microcystis aeruginosa and Anabaena flos-aquae. Toxicon. 1986;24(9):865–873. doi: 10.1016/0041-0101(86)90087-5. [DOI] [PubMed] [Google Scholar]
- Krishnamurthy T., Szafraniec L., Hunt D. F., Shabanowitz J., Yates J. R., 3rd, Hauer C. R., Carmichael W. W., Skulberg O., Codd G. A., Missler S. Structural characterization of toxic cyclic peptides from blue-green algae by tandem mass spectrometry. Proc Natl Acad Sci U S A. 1989 Feb;86(3):770–774. doi: 10.1073/pnas.86.3.770. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MacKintosh C., Beattie K. A., Klumpp S., Cohen P., Codd G. A. Cyanobacterial microcystin-LR is a potent and specific inhibitor of protein phosphatases 1 and 2A from both mammals and higher plants. FEBS Lett. 1990 May 21;264(2):187–192. doi: 10.1016/0014-5793(90)80245-e. [DOI] [PubMed] [Google Scholar]
- Moorhead G., MacKintosh R. W., Morrice N., Gallagher T., MacKintosh C. Purification of type 1 protein (serine/threonine) phosphatases by microcystin-Sepharose affinity chromatography. FEBS Lett. 1994 Dec 12;356(1):46–50. doi: 10.1016/0014-5793(94)01232-6. [DOI] [PubMed] [Google Scholar]
- Nishiwaki-Matsushima R., Ohta T., Nishiwaki S., Suganuma M., Kohyama K., Ishikawa T., Carmichael W. W., Fujiki H. Liver tumor promotion by the cyanobacterial cyclic peptide toxin microcystin-LR. J Cancer Res Clin Oncol. 1992;118(6):420–424. doi: 10.1007/BF01629424. [DOI] [PubMed] [Google Scholar]
- North M. J. Comparative biochemistry of the proteinases of eucaryotic microorganisms. Microbiol Rev. 1982 Sep;46(3):308–340. doi: 10.1128/mr.46.3.308-340.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rapala J., Lahti K., Sivonen K., Niemelä S. I. Biodegradability and adsorption on lake sediments of cyanobacterial hepatotoxins and anatoxin-a. Lett Appl Microbiol. 1994 Dec;19(6):423–428. doi: 10.1111/j.1472-765x.1994.tb00972.x. [DOI] [PubMed] [Google Scholar]
- Rudolph-Böhner S., Mierke D. F., Moroder L. Molecular structure of the cyanobacterial tumor-promoting microcystins. FEBS Lett. 1994 Aug 8;349(3):319–323. doi: 10.1016/0014-5793(94)00680-6. [DOI] [PubMed] [Google Scholar]
- Sivonen K., Namikoshi M., Evans W. R., Carmichael W. W., Sun F., Rouhiainen L., Luukkainen R., Rinehart K. L. Isolation and characterization of a variety of microcystins from seven strains of the cyanobacterial genus Anabaena. Appl Environ Microbiol. 1992 Aug;58(8):2495–2500. doi: 10.1128/aem.58.8.2495-2500.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yoshizawa S., Matsushima R., Watanabe M. F., Harada K., Ichihara A., Carmichael W. W., Fujiki H. Inhibition of protein phosphatases by microcystins and nodularin associated with hepatotoxicity. J Cancer Res Clin Oncol. 1990;116(6):609–614. doi: 10.1007/BF01637082. [DOI] [PubMed] [Google Scholar]
- Zhang Z., Zhao S., Deans-Zirattu S., Bai G., Lee E. Y. Mutagenesis of the catalytic subunit of rabbit muscle protein phosphatase-1. Mol Cell Biochem. 1993 Nov;127-128:113–119. doi: 10.1007/BF01076762. [DOI] [PubMed] [Google Scholar]