Skip to main content
American Journal of Human Genetics logoLink to American Journal of Human Genetics
. 1993 Nov;53(5):1079–1095.

Evidence for human meiotic recombination interference obtained through construction of a short tandem repeat-polymorphism linkage map of chromosome 19

James L Weber, Zhenyuan Wang, Kevin Hansen, Matt Stephenson, Clarisse Kappel, Sherry Salzman, Patricia J Wilkie, Bronya Keats, Nicholas C Dracopoli, Brigitte F Brandriff, Anne S Olsen
PMCID: PMC1682307  PMID: 8213834

Abstract

An improved linkage map for human chromosome 19 containing 35 short tandem repeat polymorphisms (STRPs) and one VNTR (D19S20) was constructed. The map included 12 new (GATA)n tetranucleotide STRPs. Although total lengths of the male (114 cM) and female (128 cM) maps were similar, at both ends of the chromosome male recombination exceeded female recombination, while in the interior portion of the map female recombination was in excess. Cosmid clones containing the STRP sequences were identified and were positioned along the chromosome by fluorescent in situ hybridization. Four rounds of careful checking and removal of genotyping errors allowed biologically relevant conclusions to be made concerning the numbers and distributions of recombination events on chromosome 19. The average numbers of recombinations per chromosome matched closely the lengths of the genetic maps computed by using the program CRIMAP. Significant numbers of chromosomes with zero, one, two, or three recombinations were detected as products of both female and male meioses. On the basis of the total number of observed pairs of recombination events in which only a single informative marker was situated between the two recombinations, a maximal estimate for the rate of meiotic STRP “gene” conversion without recombination was calculated as 3 × 10−4/meiosis. For distances up to 30 cM between recombinations, many fewer chromosomes which had undergone exactly two recombinations were observed than were expected on the basis of the assumption of independent recombination locations. This strong new evidence for human meiotic interference will help to improve the accuracy of interpretation of clinical DNA test results involving polymorphisms flanking a genetic abnormality.

Full text

PDF
1079

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blank R. D., Campbell G. R., Calabro A., D'Eustachio P. A linkage map of mouse chromosome 12: localization of Igh and effects of sex and interference on recombination. Genetics. 1988 Dec;120(4):1073–1083. doi: 10.1093/genetics/120.4.1073. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Buetow K. H. Influence of aberrant observations on high-resolution linkage analysis outcomes. Am J Hum Genet. 1991 Nov;49(5):985–994. [PMC free article] [PubMed] [Google Scholar]
  3. Callen D. F., Thompson A. D., Shen Y., Phillips H. A., Richards R. I., Mulley J. C., Sutherland G. R. Incidence and origin of "null" alleles in the (AC)n microsatellite markers. Am J Hum Genet. 1993 May;52(5):922–927. [PMC free article] [PubMed] [Google Scholar]
  4. Carrano A. V., Lamerdin J., Ashworth L. K., Watkins B., Branscomb E., Slezak T., Raff M., de Jong P. J., Keith D., McBride L. A high-resolution, fluorescence-based, semiautomated method for DNA fingerprinting. Genomics. 1989 Feb;4(2):129–136. doi: 10.1016/0888-7543(89)90291-7. [DOI] [PubMed] [Google Scholar]
  5. Ceci J. D., Siracusa L. D., Jenkins N. A., Copeland N. G. A molecular genetic linkage map of mouse chromosome 4 including the localization of several proto-oncogenes. Genomics. 1989 Nov;5(4):699–709. doi: 10.1016/0888-7543(89)90111-0. [DOI] [PubMed] [Google Scholar]
  6. Copeland N. G., Jenkins N. A. Development and applications of a molecular genetic linkage map of the mouse genome. Trends Genet. 1991 Apr;7(4):113–118. doi: 10.1016/0168-9525(91)90455-y. [DOI] [PubMed] [Google Scholar]
  7. Couch F. J., Hogan K., McCarthy T. V., Gregg R. G. Dinucleotide repeat polymorphism at the RYR1 locus (19q13.1). Nucleic Acids Res. 1991 Sep 25;19(18):5094–5094. doi: 10.1093/nar/19.18.5094. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dallas J. F. Estimation of microsatellite mutation rates in recombinant inbred strains of mouse. Mamm Genome. 1992;3(8):452–456. doi: 10.1007/BF00356155. [DOI] [PubMed] [Google Scholar]
  9. Goldgar D. E., Fain P. R., Kimberling W. J. Chiasma-based models of multilocus recombination: increased power for exclusion mapping and gene ordering. Genomics. 1989 Aug;5(2):283–290. doi: 10.1016/0888-7543(89)90059-1. [DOI] [PubMed] [Google Scholar]
  10. Haines J. L. Chromlook: an interactive program for error detection and mapping in reference linkage data. Genomics. 1992 Oct;14(2):517–519. doi: 10.1016/s0888-7543(05)80257-5. [DOI] [PubMed] [Google Scholar]
  11. Hearne C. M., Ghosh S., Todd J. A. Microsatellites for linkage analysis of genetic traits. Trends Genet. 1992 Aug;8(8):288–294. doi: 10.1016/0168-9525(92)90256-4. [DOI] [PubMed] [Google Scholar]
  12. Hofmann S. L., Topham M., Hsieh C. L., Francke U. cDNA and genomic cloning of HRC, a human sarcoplasmic reticulum protein, and localization of the gene to human chromosome 19 and mouse chromosome 7. Genomics. 1991 Apr;9(4):656–669. doi: 10.1016/0888-7543(91)90359-m. [DOI] [PubMed] [Google Scholar]
  13. Hudson T. J., Engelstein M., Lee M. K., Ho E. C., Rubenfield M. J., Adams C. P., Housman D. E., Dracopoli N. C. Isolation and chromosomal assignment of 100 highly informative human simple sequence repeat polymorphisms. Genomics. 1992 Jul;13(3):622–629. doi: 10.1016/0888-7543(92)90133-d. [DOI] [PubMed] [Google Scholar]
  14. Hultén M. Chiasma distribution at diakinesis in the normal human male. Hereditas. 1974;76(1):55–78. doi: 10.1111/j.1601-5223.1974.tb01177.x. [DOI] [PubMed] [Google Scholar]
  15. Hultén M., Lawrie N. M., Laurie D. A. Chiasma-based genetic maps of chromosome 21. Am J Med Genet Suppl. 1990;7:148–154. doi: 10.1002/ajmg.1320370730. [DOI] [PubMed] [Google Scholar]
  16. Hästbacka J., de la Chapelle A., Kaitila I., Sistonen P., Weaver A., Lander E. Linkage disequilibrium mapping in isolated founder populations: diastrophic dysplasia in Finland. Nat Genet. 1992 Nov;2(3):204–211. doi: 10.1038/ng1192-204. [DOI] [PubMed] [Google Scholar]
  17. Iles D. E., Segers B., Heytens L., Sengers R. C., Wieringa B. High-resolution physical mapping of four microsatellite repeat markers near the RYR1 locus on chromosome 19q13.1 and apparent exclusion of the MHS locus from this region in two malignant hyperthermia susceptible families. Genomics. 1992 Nov;14(3):749–754. doi: 10.1016/s0888-7543(05)80179-x. [DOI] [PubMed] [Google Scholar]
  18. Iles D. E., Segers B., de Jong P., Alleman J., Wieringa B. Dinucleotide repeat polymorphism at the D19S191 locus. Nucleic Acids Res. 1992 Mar 11;20(5):1170–1170. [PMC free article] [PubMed] [Google Scholar]
  19. Keirnan E. C., Craig I. W., Willcocks T. C. Dinucleotide repeat polymorphism in CEA gene. Nucleic Acids Res. 1991 Jun 11;19(11):3160–3160. doi: 10.1093/nar/19.11.3160-a. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kwiatkowski D. J., Henske E. P., Weimer K., Ozelius L., Gusella J. F., Haines J. Construction of a GT polymorphism map of human 9q. Genomics. 1992 Feb;12(2):229–240. doi: 10.1016/0888-7543(92)90370-8. [DOI] [PubMed] [Google Scholar]
  21. Lathrop G. M., Lalouel J. M., Julier C., Ott J. Multilocus linkage analysis in humans: detection of linkage and estimation of recombination. Am J Hum Genet. 1985 May;37(3):482–498. [PMC free article] [PubMed] [Google Scholar]
  22. Levitt R. C., Jedlicka A. E., Nouri N. Dinucleotide repeat polymorphism at the hormone sensitive lipase (LIPE) locus. Hum Mol Genet. 1992 May;1(2):139–139. doi: 10.1093/hmg/1.2.139. [DOI] [PubMed] [Google Scholar]
  23. Lincoln S. E., Lander E. S. Systematic detection of errors in genetic linkage data. Genomics. 1992 Nov;14(3):604–610. doi: 10.1016/s0888-7543(05)80158-2. [DOI] [PubMed] [Google Scholar]
  24. Mahadevan M., Tsilfidis C., Sabourin L., Shutler G., Amemiya C., Jansen G., Neville C., Narang M., Barceló J., O'Hoy K. Myotonic dystrophy mutation: an unstable CTG repeat in the 3' untranslated region of the gene. Science. 1992 Mar 6;255(5049):1253–1255. doi: 10.1126/science.1546325. [DOI] [PubMed] [Google Scholar]
  25. Moore L. A., Tidyman W. E., Arrizubieta M. J., Bandman E. Gene conversions within the skeletal myosin multigene family. J Mol Biol. 1992 Jan 5;223(1):383–387. doi: 10.1016/0022-2836(92)90741-2. [DOI] [PubMed] [Google Scholar]
  26. Nakamura Y., Lathrop M., O'Connell P., Leppert M., Lalouel J. M., White R. A primary map of ten DNA markers and two serological markers for human chromosome 19. Genomics. 1988 Jul;3(1):67–71. doi: 10.1016/0888-7543(88)90161-9. [DOI] [PubMed] [Google Scholar]
  27. Petrukhin K. E., Speer M. C., Cayanis E., Bonaldo M. F., Tantravahi U., Soares M. B., Fischer S. G., Warburton D., Gilliam T. C., Ott J. A microsatellite genetic linkage map of human chromosome 13. Genomics. 1993 Jan;15(1):76–85. doi: 10.1006/geno.1993.1012. [DOI] [PubMed] [Google Scholar]
  28. Richards R. I., Holman K., Shen Y., Kozman H., Harley H., Brook D., Shaw D. Human glandular Kallikrein genes: genetic and physical mapping of the KLK1 locus using a highly polymorphic microsatellite PCR marker. Genomics. 1991 Sep;11(1):77–82. doi: 10.1016/0888-7543(91)90103-l. [DOI] [PubMed] [Google Scholar]
  29. Royle N. J., Armour J. A., Crosier M., Jeffreys A. J. Abnormal segregation of alleles in CEPH pedigree DNAs arising from allele loss in lymphoblastoid DNA. Genomics. 1993 Jan;15(1):119–122. doi: 10.1006/geno.1993.1019. [DOI] [PubMed] [Google Scholar]
  30. Royle N. J., Hill M. C., Jeffreys A. J. Two hypervariable minisatellites D19S192 (pMS207.2) and D19S193 (pMS301.2) located at the distal ends of 19p and 19q respectively. Nucleic Acids Res. 1992 Mar 11;20(5):1163–1163. doi: 10.1093/nar/20.5.1163-a. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Shelbourne P., Winqvist R., Kunert E., Davies J., Leisti J., Thiele H., Bachmann H., Buxton J., Williamson B., Johnson K. Unstable DNA may be responsible for the incomplete penetrance of the myotonic dystrophy phenotype. Hum Mol Genet. 1992 Oct;1(7):467–473. doi: 10.1093/hmg/1.7.467. [DOI] [PubMed] [Google Scholar]
  32. Slightom J. L., Theisen T. W., Koop B. F., Goodman M. Orangutan fetal globin genes. Nucleotide sequence reveal multiple gene conversions during hominid phylogeny. J Biol Chem. 1987 Jun 5;262(16):7472–7483. [PubMed] [Google Scholar]
  33. Speed T. P., McPeek M. S., Evans S. N. Robustness of the no-interference model for ordering genetic markers. Proc Natl Acad Sci U S A. 1992 Apr 1;89(7):3103–3106. doi: 10.1073/pnas.89.7.3103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Todd J. A. La carte des microsatellites est arrivée! [The map of microsatellites has arrived!]. Hum Mol Genet. 1992 Dec;1(9):663–666. doi: 10.1093/hmg/1.9.663. [DOI] [PubMed] [Google Scholar]
  35. Tomfohrde J., Wood S., Schertzer M., Wagner M. J., Wells D. E., Parrish J., Sadler L. A., Blanton S. H., Daiger S. P., Wang Z. Human chromosome 8 linkage map based on short tandem repeat polymorphisms: effect of genotyping errors. Genomics. 1992 Sep;14(1):144–152. doi: 10.1016/s0888-7543(05)80297-6. [DOI] [PubMed] [Google Scholar]
  36. Trask B., Christensen M., Fertitta A., Bergmann A., Ashworth L., Branscomb E., Carrano A., Van Den Engh G. Fluorescence in situ hybridization mapping of human chromosome 19: mapping and verification of cosmid contigs formed by random restriction enzyme fingerprinting. Genomics. 1992 Sep;14(1):162–167. doi: 10.1016/s0888-7543(05)80299-x. [DOI] [PubMed] [Google Scholar]
  37. Trask B., Fertitta A., Christensen M., Youngblom J., Bergmann A., Copeland A., de Jong P., Mohrenweiser H., Olsen A., Carrano A. Fluorescence in situ hybridization mapping of human chromosome 19: cytogenetic band location of 540 cosmids and 70 genes or DNA markers. Genomics. 1993 Jan;15(1):133–145. doi: 10.1006/geno.1993.1021. [DOI] [PubMed] [Google Scholar]
  38. Tynan K., Olsen A., Trask B., de Jong P., Thompson J., Zimmermann W., Carrano A., Mohrenweiser H. Assembly and analysis of cosmid contigs in the CEA-gene family region of human chromosome 19. Nucleic Acids Res. 1992 Apr 11;20(7):1629–1636. doi: 10.1093/nar/20.7.1629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Weber J. L., Kappel C., May P. E., Kwitek A. E. Dinucleotide repeat polymorphism at the D19S75 locus. Nucleic Acids Res. 1990 Aug 11;18(15):4639–4639. [PMC free article] [PubMed] [Google Scholar]
  40. Weber J. L., May P. E. Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. Am J Hum Genet. 1989 Mar;44(3):388–396. [PMC free article] [PubMed] [Google Scholar]
  41. Weber J. L., May P. E., Kappel C. Dinucleotide repeat polymorphism at the D19S49 locus. Nucleic Acids Res. 1990 Apr 11;18(7):1927–1927. doi: 10.1093/nar/18.7.1927. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Weber J. L., Polymeropoulos M. H., May P. E., Kwitek A. E., Xiao H., McPherson J. D., Wasmuth J. J. Mapping of human chromosome 5 microsatellite DNA polymorphisms. Genomics. 1991 Nov;11(3):695–700. doi: 10.1016/0888-7543(91)90077-r. [DOI] [PubMed] [Google Scholar]
  43. Weissenbach J., Gyapay G., Dib C., Vignal A., Morissette J., Millasseau P., Vaysseix G., Lathrop M. A second-generation linkage map of the human genome. Nature. 1992 Oct 29;359(6398):794–801. doi: 10.1038/359794a0. [DOI] [PubMed] [Google Scholar]

Articles from American Journal of Human Genetics are provided here courtesy of American Society of Human Genetics

RESOURCES