Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1996 Nov;62(11):4162–4167. doi: 10.1128/aem.62.11.4162-4167.1996

Direct ribosome isolation from soil to extract bacterial rRNA for community analysis.

A Felske 1, B Engelen 1, U Nübel 1, H Backhaus 1
PMCID: PMC168238  PMID: 8900007

Abstract

A simple method that combines an adapted ribosome isolation method and a common RNA extraction step has been developed for selective recovery of intact rRNA from natural microbial communities in soil. After mechanical cell lysis, ribosomes are separated by centrifugation steps, avoiding massive humic acid contamination and RNA degradation. The protocol accommodates the complex composition of soils by blocking adsorbing surfaces and humic acids with polyvinylpyrrolidone and bovine serum albumin. A usual RNA extraction step yields rRNA accessible for hybridization or reverse transcription-PCR. Hybridization with specific oligonucleotide probes was used for group-specific yield comparison. By using a probe hybridizing to the 16S rRNA of the bacterial kingdom, total bacterial rRNA yield was estimated to be in the range of 0.2 microgram per g for different soils. Group-specific probes did not indicate a selectivity of the isolation procedure and differentiated the compositions of different soil microbial communities. The sequence diversity of the isolated RNA population was also revealed by temperature gradient gel electrophoresis of reverse transcription-PCR amplification products by using a region of the 16S rRNA as a target. The pattern obtained by this analysis differed from a similar one resulting from the separation of amplification products of community DNA preparations. This different view of the community composition is attributable to the correlation of ribosome numbers to the metabolic activity of bacteria in the habitat under observation.

Full Text

The Full Text of this article is available as a PDF (371.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amann R. I., Binder B. J., Olson R. J., Chisholm S. W., Devereux R., Stahl D. A. Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol. 1990 Jun;56(6):1919–1925. doi: 10.1128/aem.56.6.1919-1925.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brosius J., Dull T. J., Sleeter D. D., Noller H. F. Gene organization and primary structure of a ribosomal RNA operon from Escherichia coli. J Mol Biol. 1981 May 15;148(2):107–127. doi: 10.1016/0022-2836(81)90508-8. [DOI] [PubMed] [Google Scholar]
  3. Hahn D., Kester R., Starrenburg M. J., Akkermans A. D. Extraction of ribosomal RNA from soil for detection of Frankia with oligonucleotide probes. Arch Microbiol. 1990;154(4):329–335. doi: 10.1007/BF00276527. [DOI] [PubMed] [Google Scholar]
  4. Herron P. R., Wellington E. M. New method for extraction of streptomycete spores from soil and application to the study of lysogeny in sterile amended and nonsterile soil. Appl Environ Microbiol. 1990 May;56(5):1406–1412. doi: 10.1128/aem.56.5.1406-1412.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Lorenz M. G., Wackernagel W. Adsorption of DNA to sand and variable degradation rates of adsorbed DNA. Appl Environ Microbiol. 1987 Dec;53(12):2948–2952. doi: 10.1128/aem.53.12.2948-2952.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Moran M. A., Torsvik V. L., Torsvik T., Hodson R. E. Direct extraction and purification of rRNA for ecological studies. Appl Environ Microbiol. 1993 Mar;59(3):915–918. doi: 10.1128/aem.59.3.915-918.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Muyzer G., de Waal E. C., Uitterlinden A. G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol. 1993 Mar;59(3):695–700. doi: 10.1128/aem.59.3.695-700.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ogram A. V., Mathot M. L., Harsh J. B., Boyle J., Pettigrew C. A. Effects of DNA polymer length on its adsorption to soils. Appl Environ Microbiol. 1994 Feb;60(2):393–396. doi: 10.1128/aem.60.2.393-396.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Rosenbaum V., Riesner D. Temperature-gradient gel electrophoresis. Thermodynamic analysis of nucleic acids and proteins in purified form and in cellular extracts. Biophys Chem. 1987 May 9;26(2-3):235–246. doi: 10.1016/0301-4622(87)80026-1. [DOI] [PubMed] [Google Scholar]
  10. Selenska S., Klingmüller W. Direct recovery and molecular analysis of DNA and RNA from soil. Microb Releases. 1992 Jun;1(1):41–46. [PubMed] [Google Scholar]
  11. Srivastava A. K., Schlessinger D. Mechanism and regulation of bacterial ribosomal RNA processing. Annu Rev Microbiol. 1990;44:105–129. doi: 10.1146/annurev.mi.44.100190.000541. [DOI] [PubMed] [Google Scholar]
  12. Teske A., Wawer C., Muyzer G., Ramsing N. B. Distribution of sulfate-reducing bacteria in a stratified fjord (Mariager Fjord, Denmark) as evaluated by most-probable-number counts and denaturing gradient gel electrophoresis of PCR-amplified ribosomal DNA fragments. Appl Environ Microbiol. 1996 Apr;62(4):1405–1415. doi: 10.1128/aem.62.4.1405-1415.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Tsai Y. L., Park M. J., Olson B. H. Rapid method for direct extraction of mRNA from seeded soils. Appl Environ Microbiol. 1991 Mar;57(3):765–768. doi: 10.1128/aem.57.3.765-768.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Wagner M., Erhart R., Manz W., Amann R., Lemmer H., Wedi D., Schleifer K. H. Development of an rRNA-targeted oligonucleotide probe specific for the genus Acinetobacter and its application for in situ monitoring in activated sludge. Appl Environ Microbiol. 1994 Mar;60(3):792–800. doi: 10.1128/aem.60.3.792-800.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Weller R., Weller J. W., Ward D. M. 16S rRNA sequences of uncultivated hot spring cyanobacterial mat inhabitants retrieved as randomly primed cDNA. Appl Environ Microbiol. 1991 Apr;57(4):1146–1151. doi: 10.1128/aem.57.4.1146-1151.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Young C. C., Burghoff R. L., Keim L. G., Minak-Bernero V., Lute J. R., Hinton S. M. Polyvinylpyrrolidone-agarose gel electrophoresis purification of polymerase chain reaction-amplifiable DNA from soils. Appl Environ Microbiol. 1993 Jun;59(6):1972–1974. doi: 10.1128/aem.59.6.1972-1974.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES