Skip to main content
American Journal of Human Genetics logoLink to American Journal of Human Genetics
. 1993 Sep;53(3):730–739.

A rare disease-associated mutation in the medium-chain acyl-CoA dehydrogenase (MCAD) gene changes a conserved arginine, previously shown to be functionally essential in short-chain acyl-CoA dehydrogenase (SCAD)

Brage Storstein Andresen, Peter Bross, Thomas G Jensen, Vibeke Winter, Inga Knudsen, Steen Kølvraa, Uffe Birk Jensen, Lars Bolund, Marinus Duran, Jung-Ja Kim, Diana Curtis, Priscille Divry, Christine Vianey-Saban, Niels Gregersen
PMCID: PMC1682403  PMID: 8102510

Abstract

Medium-chain acyl-CoA dehydrogenase (MCAD) deficiency is a serious and potentially fatal inherited defect in the β-oxidation of fatty acids. Approximately 80% of patients with MCAD deficiency are homozygous for a single disease-causing mutation (G985). The remaining patients (except for a few cases worldwide) are compound heterozygous with G985 in one allele. By sequencing of cloned PCR-amplified MCAD cDNA from a G985 compound heterozygous patient, we identified a C-to-T transition at position 157 as the only change in the entire coding sequence of the non-G985 allele. The presence of the T157 mutation was verified in genomic DNA from the patient and her mother by a PCR-based assay. The mutation changes a conserved arginine at position 28 (R28C) of the mature MCAD protein. The effect of the T157 mutation on MCAD protein was investigated by expression of mutant MCAD cDNA in COS-7 cells. On the basis of knowledge about the three-dimensional structure of the MCAD protein, we suggest that the mutation destroys a salt bridge between arginine28 and glutamate86, thereby affecting the formation of enzymatically active protein. Twenty-two additional families with compound heterozygous patients were tested in the PCR-based assay. The T157 mutation was identified in one of these families, which had an MCAD-deficient child who died unexpectedly in infancy. Our results indicate that the mutation is rare. It is, however, noteworthy that a homologous mutation has previously been identified in the short-chain acyl-CoA dehydrogenase (SCAD) gene of a patient with SCAD deficiency, suggesting that the conserved arginine is crucial for formation of active enzyme in the straight-chain acyl-CoA dehydrogenases.

Full text

PDF
730

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bross P., Engst S., Strauss A. W., Kelly D. P., Rasched I., Ghisla S. Characterization of wild-type and an active site mutant of human medium chain acyl-CoA dehydrogenase after expression in Escherichia coli. J Biol Chem. 1990 May 5;265(13):7116–7119. [PubMed] [Google Scholar]
  2. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  3. Coates P. M., Indo Y., Young D., Hale D. E., Tanaka K. Immunochemical characterization of variant medium-chain acyl-CoA dehydrogenase in fibroblasts from patients with medium-chain acyl-CoA dehydrogenase deficiency. Pediatr Res. 1992 Jan;31(1):34–38. doi: 10.1203/00006450-199201000-00006. [DOI] [PubMed] [Google Scholar]
  4. Ding J. H., Yang B. Z., Bao Y., Roe C. R., Chen Y. T. Identification of a new mutation in medium-chain acyl-CoA dehydrogenase (MCAD) deficiency. Am J Hum Genet. 1992 Jan;50(1):229–233. [PMC free article] [PubMed] [Google Scholar]
  5. Duran M., Cleutjens C. B., Ketting D., Dorland L., de Klerk J. B., van Sprang F. J., Berger R. Diagnosis of medium-chain acyl-CoA dehydrogenase deficiency in lymphocytes and liver by a gas chromatographic method: the effect of oral riboflavin supplementation. Pediatr Res. 1992 Jan;31(1):39–42. doi: 10.1203/00006450-199201000-00007. [DOI] [PubMed] [Google Scholar]
  6. Duran M., Hofkamp M., Rhead W. J., Saudubray J. M., Wadman S. K. Sudden child death and 'healthy' affected family members with medium-chain acyl-coenzyme A dehydrogenase deficiency. Pediatrics. 1986 Dec;78(6):1052–1057. [PubMed] [Google Scholar]
  7. Duran M., Mitchell G., de Klerk J. B., de Jager J. P., Hofkamp M., Bruinvis L., Ketting D., Saudubray J. M., Wadman S. K. Octanoic acidemia and octanoylcarnitine excretion with dicarboxylic aciduria due to defective oxidation of medium-chain fatty acids. J Pediatr. 1985 Sep;107(3):397–404. doi: 10.1016/s0022-3476(85)80514-x. [DOI] [PubMed] [Google Scholar]
  8. Graham F. L., van der Eb A. J. A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology. 1973 Apr;52(2):456–467. doi: 10.1016/0042-6822(73)90341-3. [DOI] [PubMed] [Google Scholar]
  9. Gregersen N., Andresen B. S., Bross P., Winter V., Rüdiger N., Engst S., Christensen E., Kelly D., Strauss A. W., Kølvraa S. Molecular characterization of medium-chain acyl-CoA dehydrogenase (MCAD) deficiency: identification of a lys329 to glu mutation in the MCAD gene, and expression of inactive mutant enzyme protein in E. coli. Hum Genet. 1991 Apr;86(6):545–551. doi: 10.1007/BF00201539. [DOI] [PubMed] [Google Scholar]
  10. Gregersen N., Blakemore A. I., Winter V., Andresen B., Kølvraa S., Bolund L., Curtis D., Engel P. C. Specific diagnosis of medium-chain acyl-CoA dehydrogenase (MCAD) deficiency in dried blood spots by a polymerase chain reaction (PCR) assay detecting a point-mutation (G985) in the MCAD gene. Clin Chim Acta. 1991 Nov 9;203(1):23–34. doi: 10.1016/0009-8981(91)90153-4. [DOI] [PubMed] [Google Scholar]
  11. Gregersen N., Lauritzen R., Rasmussen K. Suberylglycine excretion in the urine from a patient with dicarboxylic aciduria. Clin Chim Acta. 1976 Aug 2;70(3):417–425. doi: 10.1016/0009-8981(76)90355-7. [DOI] [PubMed] [Google Scholar]
  12. Gustafson S., Proper J. A., Bowie E. J., Sommer S. S. Parameters affecting the yield of DNA from human blood. Anal Biochem. 1987 Sep;165(2):294–299. doi: 10.1016/0003-2697(87)90272-7. [DOI] [PubMed] [Google Scholar]
  13. Indo Y., Yang-Feng T., Glassberg R., Tanaka K. Molecular cloning and nucleotide sequence of cDNAs encoding human long-chain acyl-CoA dehydrogenase and assignment of the location of its gene (ACADL) to chromosome 2. Genomics. 1991 Nov;11(3):609–620. doi: 10.1016/0888-7543(91)90068-p. [DOI] [PubMed] [Google Scholar]
  14. Izai K., Uchida Y., Orii T., Yamamoto S., Hashimoto T. Novel fatty acid beta-oxidation enzymes in rat liver mitochondria. I. Purification and properties of very-long-chain acyl-coenzyme A dehydrogenase. J Biol Chem. 1992 Jan 15;267(2):1027–1033. [PubMed] [Google Scholar]
  15. Jensen T. G., Andresen B. S., Bross P., Jensen U. B., Holme E., Kølvraa S., Gregersen N., Bolund L. Expression of wild-type and mutant medium-chain acyl-CoA dehydrogenase (MCAD) cDNA in eucaryotic cells. Biochim Biophys Acta. 1992 Oct 13;1180(1):65–72. doi: 10.1016/0925-4439(92)90028-l. [DOI] [PubMed] [Google Scholar]
  16. Kelly D. P., Hale D. E., Rutledge S. L., Ogden M. L., Whelan A. J., Zhang Z., Strauss A. W. Molecular basis of inherited medium-chain acyl-CoA dehydrogenase deficiency causing sudden child death. J Inherit Metab Dis. 1992;15(2):171–180. doi: 10.1007/BF01799626. [DOI] [PubMed] [Google Scholar]
  17. Kelly D. P., Whelan A. J., Ogden M. L., Alpers R., Zhang Z. F., Bellus G., Gregersen N., Dorland L., Strauss A. W. Molecular characterization of inherited medium-chain acyl-CoA dehydrogenase deficiency. Proc Natl Acad Sci U S A. 1990 Dec;87(23):9236–9240. doi: 10.1073/pnas.87.23.9236. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kim J. J., Wu J. Structure of the medium-chain acyl-CoA dehydrogenase from pig liver mitochondria at 3-A resolution. Proc Natl Acad Sci U S A. 1988 Sep;85(18):6677–6681. doi: 10.1073/pnas.85.18.6677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kølvraa S., Gregersen N., Blakemore A. I., Schneidermann A. K., Winter V., Andresen B. S., Curtis D., Engel P. C., Pricille D., Rhead W. The most common mutation causing medium-chain acyl-CoA dehydrogenase deficiency is strongly associated with a particular haplotype in the region of the gene. Hum Genet. 1991 Aug;87(4):425–428. doi: 10.1007/BF00197161. [DOI] [PubMed] [Google Scholar]
  20. Kølvraa S., Gregersen N., Christensen E., Hobolth N. In vitro fibroblast studies in a patient with C6-C10-dicarboxylic aciduria: evidence for a defect in general acyl-CoA dehydrogenase. Clin Chim Acta. 1982 Nov 24;126(1):53–67. doi: 10.1016/0009-8981(82)90361-8. [DOI] [PubMed] [Google Scholar]
  21. Lehman T. C., Hale D. E., Bhala A., Thorpe C. An acyl-coenzyme A dehydrogenase assay utilizing the ferricenium ion. Anal Biochem. 1990 May 1;186(2):280–284. doi: 10.1016/0003-2697(90)90080-s. [DOI] [PubMed] [Google Scholar]
  22. Manning N. J., Olpin S. E., Pollitt R. J., Webley J. A comparison of [9,10-3H]palmitic and [9,10-3H]myristic acids for the detection of defects of fatty acid oxidation in intact cultured fibroblasts. J Inherit Metab Dis. 1990;13(1):58–68. doi: 10.1007/BF01799333. [DOI] [PubMed] [Google Scholar]
  23. Marton A., Delbecchi L., Bourgaux P. DNA nicking favors PCR recombination. Nucleic Acids Res. 1991 May 11;19(9):2423–2426. doi: 10.1093/nar/19.9.2423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Matsubara Y., Indo Y., Naito E., Ozasa H., Glassberg R., Vockley J., Ikeda Y., Kraus J., Tanaka K. Molecular cloning and nucleotide sequence of cDNAs encoding the precursors of rat long chain acyl-coenzyme A, short chain acyl-coenzyme A, and isovaleryl-coenzyme A dehydrogenases. Sequence homology of four enzymes of the acyl-CoA dehydrogenase family. J Biol Chem. 1989 Sep 25;264(27):16321–16331. [PubMed] [Google Scholar]
  25. Matsubara Y., Kraus J. P., Ozasa H., Glassberg R., Finocchiaro G., Ikeda Y., Mole J., Rosenberg L. E., Tanaka K. Molecular cloning and nucleotide sequence of cDNA encoding the entire precursor of rat liver medium chain acyl coenzyme A dehydrogenase. J Biol Chem. 1987 Jul 25;262(21):10104–10108. [PubMed] [Google Scholar]
  26. Matsubara Y., Narisawa K., Miyabayashi S., Tada K., Coates P. M. Molecular lesion in patients with medium-chain acyl-CoA dehydrogenase deficiency. Lancet. 1990 Jun 30;335(8705):1589–1589. doi: 10.1016/0140-6736(90)91413-5. [DOI] [PubMed] [Google Scholar]
  27. Meyerhans A., Vartanian J. P., Wain-Hobson S. DNA recombination during PCR. Nucleic Acids Res. 1990 Apr 11;18(7):1687–1691. doi: 10.1093/nar/18.7.1687. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Naito E., Indo Y., Tanaka K. Short chain acyl-coenzyme A dehydrogenase (SCAD) deficiency. Immunochemical demonstration of molecular heterogeneity due to variant SCAD with differing stability. J Clin Invest. 1989 Nov;84(5):1671–1674. doi: 10.1172/JCI114346. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Naito E., Ozasa H., Ikeda Y., Tanaka K. Molecular cloning and nucleotide sequence of complementary DNAs encoding human short chain acyl-coenzyme A dehydrogenase and the study of the molecular basis of human short chain acyl-coenzyme A dehydrogenase deficiency. J Clin Invest. 1989 May;83(5):1605–1613. doi: 10.1172/JCI114058. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Rhead W. J., Amendt B. A., Fritchman K. S., Felts S. J. Dicarboxylic aciduria: deficient [1-14C]octanoate oxidation and medium-chain acyl-CoA dehydrogenase in fibroblasts. Science. 1983 Jul 1;221(4605):73–75. doi: 10.1126/science.6857268. [DOI] [PubMed] [Google Scholar]
  31. Saudubray J. M., Coudé F. X., Demaugre F., Johnson C., Gibson K. M., Nyhan W. L. Oxidation of fatty acids in cultured fibroblasts: a model system for the detection and study of defects in oxidation. Pediatr Res. 1982 Oct;16(10):877–881. doi: 10.1203/00006450-198210000-00015. [DOI] [PubMed] [Google Scholar]
  32. Stanley C. A., Hale D. E., Coates P. M., Hall C. L., Corkey B. E., Yang W., Kelley R. I., Gonzales E. L., Williamson J. R., Baker L. Medium-chain acyl-CoA dehydrogenase deficiency in children with non-ketotic hypoglycemia and low carnitine levels. Pediatr Res. 1983 Nov;17(11):877–884. doi: 10.1203/00006450-198311000-00008. [DOI] [PubMed] [Google Scholar]
  33. Thorpe C., Matthews R. G., Williams C. H., Jr Acyl-coenzyme A dehydrogenase from pig kidney. Purification and properties. Biochemistry. 1979 Jan 23;18(2):331–337. doi: 10.1021/bi00569a016. [DOI] [PubMed] [Google Scholar]
  34. Yokota I., Coates P. M., Hale D. E., Rinaldo P., Tanaka K. Molecular survey of a prevalent mutation, 985A-to-G transition, and identification of five infrequent mutations in the medium-chain Acyl-CoA dehydrogenase (MCAD) gene in 55 patients with MCAD deficiency. Am J Hum Genet. 1991 Dec;49(6):1280–1291. [PMC free article] [PubMed] [Google Scholar]
  35. Yokota I., Indo Y., Coates P. M., Tanaka K. Molecular basis of medium chain acyl-coenzyme A dehydrogenase deficiency. An A to G transition at position 985 that causes a lysine-304 to glutamate substitution in the mature protein is the single prevalent mutation. J Clin Invest. 1990 Sep;86(3):1000–1003. doi: 10.1172/JCI114761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Yokota I., Saijo T., Vockley J., Tanaka K. Impaired tetramer assembly of variant medium-chain acyl-coenzyme A dehydrogenase with a glutamate or aspartate substitution for lysine 304 causing instability of the protein. J Biol Chem. 1992 Dec 25;267(36):26004–26010. [PubMed] [Google Scholar]

Articles from American Journal of Human Genetics are provided here courtesy of American Society of Human Genetics

RESOURCES