Skip to main content
American Journal of Human Genetics logoLink to American Journal of Human Genetics
. 1993 Dec;53(6):1289–1297.

Linkage analysis by two-dimensional DNA typing.

G J te Meerman 1, E Mullaart 1, M A van der Meulen 1, J H den Daas 1, B Morolli 1, A G Uitterlinden 1, J Vijg 1
PMCID: PMC1682500  PMID: 8250045

Abstract

In two-dimensional (2-D) DNA typing, genomic DNA fragments are separated, first according to size by electrophoresis in a neutral polyacrylamide gel and second according to sequence by denaturing gradient gel electrophoresis, followed by hybridization analysis using micro- and minisatellite core probes. The 2-D DNA typing method generates a large amount of information on polymorphic loci per gel. Here we demonstrate the potential usefulness of 2-D DNA typing in an empirical linkage study on the red factor in cattle, and we show an example of the 2-D DNA typing analysis of a human pedigree. The power efficiency of 2-D DNA typing in general is compared with that of single-locus typing by simulation. The results indicate that, although 2-D DNA typing is very efficient in generating data on polymorphic loci, its power to detect linkage is lower than single-locus typing, because it is not obvious whether a spot represents the presence of one or two alleles. It is possible to compensate for this lower informativeness by increasing the sample size. Genome scanning by 2-D DNA typing has the potential to be more efficient than current genotyping methods in scoring polymorphic loci. Hence, it could become a method of choice in mapping genetic traits in humans and animals.

Full text

PDF
1289

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Clerget-Darpoux F., Bonaïti-Pellié C. Strategies based on marker information for the study of human diseases. Ann Hum Genet. 1992 May;56(Pt 2):145–153. doi: 10.1111/j.1469-1809.1992.tb01140.x. [DOI] [PubMed] [Google Scholar]
  2. Fischer S. G., Lerman L. S. Length-independent separation of DNA restriction fragments in two-dimensional gel electrophoresis. Cell. 1979 Jan;16(1):191–200. doi: 10.1016/0092-8674(79)90200-9. [DOI] [PubMed] [Google Scholar]
  3. Hovig E., Mullaart E., Børresen A. L., Uitterlinden A. G., Vijg J. Genome scanning of human breast carcinomas using micro- and minisatellite core probes. Genomics. 1993 Jul;17(1):66–75. doi: 10.1006/geno.1993.1284. [DOI] [PubMed] [Google Scholar]
  4. Jeffreys A. J., Royle N. J., Wilson V., Wong Z. Spontaneous mutation rates to new length alleles at tandem-repetitive hypervariable loci in human DNA. Nature. 1988 Mar 17;332(6161):278–281. doi: 10.1038/332278a0. [DOI] [PubMed] [Google Scholar]
  5. Lathrop G. M., Lalouel J. M. Easy calculations of lod scores and genetic risks on small computers. Am J Hum Genet. 1984 Mar;36(2):460–465. [PMC free article] [PubMed] [Google Scholar]
  6. Rommens J. M., Iannuzzi M. C., Kerem B., Drumm M. L., Melmer G., Dean M., Rozmahel R., Cole J. L., Kennedy D., Hidaka N. Identification of the cystic fibrosis gene: chromosome walking and jumping. Science. 1989 Sep 8;245(4922):1059–1065. doi: 10.1126/science.2772657. [DOI] [PubMed] [Google Scholar]
  7. Todd J. A. La carte des microsatellites est arrivée! [The map of microsatellites has arrived!]. Hum Mol Genet. 1992 Dec;1(9):663–666. doi: 10.1093/hmg/1.9.663. [DOI] [PubMed] [Google Scholar]
  8. Uitterlinden A. G., Slagboom P. E., Knook D. L., Vijg J. Two-dimensional DNA fingerprinting of human individuals. Proc Natl Acad Sci U S A. 1989 Apr;86(8):2742–2746. doi: 10.1073/pnas.86.8.2742. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Uitterlinden A. G., Vijg J. Denaturing gradient gel electrophoretic analysis of minisatellite alleles. Electrophoresis. 1991 Jan;12(1):12–16. doi: 10.1002/elps.1150120104. [DOI] [PubMed] [Google Scholar]

Articles from American Journal of Human Genetics are provided here courtesy of American Society of Human Genetics

RESOURCES