Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1996 Dec;62(12):4303–4308. doi: 10.1128/aem.62.12.4303-4308.1996

PCR amplification of the fimA gene sequence of Salmonella typhimurium, a specific method for detection of Salmonella spp.

H J Cohen 1, S M Mechanda 1, W Lin 1
PMCID: PMC168256  PMID: 8953701

Abstract

The goal of this study was to evaluate the suitability of the fimA gene amplification by PCR as a specific method for detection of Salmonella strains. Salmonella typhimurium and other pathogenic members of the family Enterobacteriaceae produce morphologically and antigenically related, thin, aggregative, type 1 fimbriae. A single gene, fimA, encodes the major fimbrial unit. In order to obtain higher specificity, we have selected a series of primers internal to the fimA gene sequence and have developed a PCR method for detecting Salmonella strains. A collection of 376 strains of Salmonella comprising over 80 serovars, isolated from animals and humans in Canada, have been used to evaluate this PCR method. Forty non-Salmonella strains were also tested by the same procedure. Cultures were screened by inoculating a single colony of bacteria directly into a PCR mixture containing a pair of primers specific for the fimA gene. The specific PCR product is an 85-bp fragment which was visualized by polyacrylamide gel electrophoresis and ethidium bromide staining. All Salmonella strains gave positive results by the PCR. Feed and milk samples contaminated by Salmonella strains were also detected by this procedure. The detection of all Salmonella strains tested and the failure to amplify the fragment from non-Salmonella strains confirm that the fimA gene contains sequences unique to Salmonella strains and demonstrate that this gene is a suitable PCR target for detection of Salmonella strains in food samples.

Full Text

The Full Text of this article is available as a PDF (272.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aabo S., Rasmussen O. F., Rossen L., Sørensen P. D., Olsen J. E. Salmonella identification by the polymerase chain reaction. Mol Cell Probes. 1993 Jun;7(3):171–178. doi: 10.1006/mcpr.1993.1026. [DOI] [PubMed] [Google Scholar]
  2. Aslanzadeh J., Paulissen L. J. Role of type 1 and type 3 fimbriae on the adherence and pathogenesis of Salmonella enteritidis in mice. Microbiol Immunol. 1992;36(4):351–359. doi: 10.1111/j.1348-0421.1992.tb02034.x. [DOI] [PubMed] [Google Scholar]
  3. Bej A. K., Mahbubani M. H., Boyce M. J., Atlas R. M. Detection of Salmonella spp. in oysters by PCR. Appl Environ Microbiol. 1994 Jan;60(1):368–373. doi: 10.1128/aem.60.1.368-373.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Buchanan K., Falkow S., Hull R. A., Hull S. I. Frequency among Enterobacteriaceae of the DNA sequences encoding type 1 pili. J Bacteriol. 1985 May;162(2):799–803. doi: 10.1128/jb.162.2.799-803.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cano R. J., Rasmussen S. R., Sánchez Fraga G., Palomares J. C. Fluorescent detection-polymerase chain reaction (FD-PCR) assay on microwell plates as a screening test for salmonellas in foods. J Appl Bacteriol. 1993 Sep;75(3):247–253. doi: 10.1111/j.1365-2672.1993.tb02773.x. [DOI] [PubMed] [Google Scholar]
  6. Clegg S., Gerlach G. F. Enterobacterial fimbriae. J Bacteriol. 1987 Mar;169(3):934–938. doi: 10.1128/jb.169.3.934-938.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Clegg S., Pruckler J., Purcell B. K. Complementation analyses of recombinant plasmids encoding type 1 fimbriae of members of the family Enterobacteriaceae. Infect Immun. 1985 Oct;50(1):338–340. doi: 10.1128/iai.50.1.338-340.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Clegg S., Purcell B. K., Pruckler J. Characterization of genes encoding type 1 fimbriae of Klebsiella pneumoniae, Salmonella typhimurium, and Serratia marcescens. Infect Immun. 1987 Feb;55(2):281–287. doi: 10.1128/iai.55.2.281-287.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cohen N. D., McGruder E. D., Neibergs H. L., Behle R. W., Wallis D. E., Hargis B. M. Detection of Salmonella enteritidis in feces from poultry using booster polymerase chain reaction and oligonucleotide primers specific for all members of the genus Salmonella. Poult Sci. 1994 Feb;73(2):354–357. doi: 10.3382/ps.0730354. [DOI] [PubMed] [Google Scholar]
  10. Crichton P. B., Old D. C. Salmonellae of serotypes gallinarum and pullorum grouped by biotyping and fimbrial-gene probing. J Med Microbiol. 1990 Jul;32(3):145–152. doi: 10.1099/00222615-32-3-145. [DOI] [PubMed] [Google Scholar]
  11. Crichton P. B., Yakubu D. E., Old D. C., Clegg S. Immunological and genetical relatedness of type-1 and type-2 fimbriae in salmonellas of serotypes Gallinarum, Pullorum and Typhimurium. J Appl Bacteriol. 1989 Sep;67(3):283–291. doi: 10.1111/j.1365-2672.1989.tb02497.x. [DOI] [PubMed] [Google Scholar]
  12. Crosa J. H., Brenner D. J., Ewing W. H., Falkow S. Molecular relationships among the Salmonelleae. J Bacteriol. 1973 Jul;115(1):307–315. doi: 10.1128/jb.115.1.307-315.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Duguid J. P., Anderson E. S., Campbell I. Fimbriae and adhesive properties in Salmonellae. J Pathol Bacteriol. 1966 Jul;92(1):107–138. doi: 10.1002/path.1700920113. [DOI] [PubMed] [Google Scholar]
  14. Duguid J. P., Campbell I. Antigens of the type-1 fimbriae of salmonellae and other enterobacteria. J Med Microbiol. 1969 Nov 4;2(4):535–553. doi: 10.1099/00222615-2-4-535. [DOI] [PubMed] [Google Scholar]
  15. Finlay B. B., Falkow S. Salmonella as an intracellular parasite. Mol Microbiol. 1989 Dec;3(12):1833–1841. doi: 10.1111/j.1365-2958.1989.tb00170.x. [DOI] [PubMed] [Google Scholar]
  16. Finlay B. B., Falkow S. Virulence factors associated with Salmonella species. Microbiol Sci. 1988 Nov;5(11):324–328. [PubMed] [Google Scholar]
  17. Horiuchi S., Inagaki Y., Okamura N., Nakaya R., Yamamoto N. Type 1 pili enhance the invasion of Salmonella braenderup and Salmonella typhimurium to HeLa cells. Microbiol Immunol. 1992;36(6):593–602. doi: 10.1111/j.1348-0421.1992.tb02059.x. [DOI] [PubMed] [Google Scholar]
  18. Krysinski E. P., Heimsch R. C. Use of enzyme-labeled antibodies to detect Salmonella in foods. Appl Environ Microbiol. 1977 Apr;33(4):947–954. doi: 10.1128/aem.33.4.947-954.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kukkonen M., Raunio T., Virkola R., Lähteenmäki K., Mäkelä P. H., Klemm P., Clegg S., Korhonen T. K. Basement membrane carbohydrate as a target for bacterial adhesion: binding of type I fimbriae of Salmonella enterica and Escherichia coli to laminin. Mol Microbiol. 1993 Jan;7(2):229–237. doi: 10.1111/j.1365-2958.1993.tb01114.x. [DOI] [PubMed] [Google Scholar]
  20. Mattingly J. A. An enzyme immunoassay for the detection of all Salmonella using a combination of a myeloma protein and a hybridoma antibody. J Immunol Methods. 1984 Oct 12;73(1):147–156. doi: 10.1016/0022-1759(84)90040-1. [DOI] [PubMed] [Google Scholar]
  21. Nguyen A. V., Khan M. I., Lu Z. Amplification of Salmonella chromosomal DNA using the polymerase chain reaction. Avian Dis. 1994 Jan-Mar;38(1):119–126. [PubMed] [Google Scholar]
  22. Nichols W. A., Clegg S., Brown M. R. Characterization of the type 1 fimbrial subunit gene (fimA) of Serratia marcescens. Mol Microbiol. 1990 Dec;4(12):2119–2126. doi: 10.1111/j.1365-2958.1990.tb00573.x. [DOI] [PubMed] [Google Scholar]
  23. Pollard D. R., Johnson W. M., Lior H., Tyler S. D., Rozee K. R. Rapid and specific detection of verotoxin genes in Escherichia coli by the polymerase chain reaction. J Clin Microbiol. 1990 Mar;28(3):540–545. doi: 10.1128/jcm.28.3.540-545.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Purcell B. K., Pruckler J., Clegg S. Nucleotide sequences of the genes encoding type 1 fimbrial subunits of Klebsiella pneumoniae and Salmonella typhimurium. J Bacteriol. 1987 Dec;169(12):5831–5834. doi: 10.1128/jb.169.12.5831-5834.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Rahn K., De Grandis S. A., Clarke R. C., McEwen S. A., Galán J. E., Ginocchio C., Curtiss R., 3rd, Gyles C. L. Amplification of an invA gene sequence of Salmonella typhimurium by polymerase chain reaction as a specific method of detection of Salmonella. Mol Cell Probes. 1992 Aug;6(4):271–279. doi: 10.1016/0890-8508(92)90002-f. [DOI] [PubMed] [Google Scholar]
  26. Rasmussen S. R., Rasmussen H. B., Larsen M. R., Hoff-Jørgensen R., Cano R. J. Combined polymerase chain reaction-hybridization microplate assay used to detect bovine leukemia virus and Salmonella. Clin Chem. 1994 Feb;40(2):200–205. [PubMed] [Google Scholar]
  27. Rossen L., Nørskov P., Holmstrøm K., Rasmussen O. F. Inhibition of PCR by components of food samples, microbial diagnostic assays and DNA-extraction solutions. Int J Food Microbiol. 1992 Sep;17(1):37–45. doi: 10.1016/0168-1605(92)90017-w. [DOI] [PubMed] [Google Scholar]
  28. Scholl D. R., Kaufmann C., Jollick J. D., York C. K., Goodrum G. R., Charache P. Clinical application of novel sample processing technology for the identification of salmonellae by using DNA probes. J Clin Microbiol. 1990 Feb;28(2):237–241. doi: 10.1128/jcm.28.2.237-241.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Sockett P. N. The economic implications of human Salmonella infection. J Appl Bacteriol. 1991 Oct;71(4):289–295. doi: 10.1111/j.1365-2672.1991.tb03792.x. [DOI] [PubMed] [Google Scholar]
  30. Song J. H., Cho H., Park M. Y., Na D. S., Moon H. B., Pai C. H. Detection of Salmonella typhi in the blood of patients with typhoid fever by polymerase chain reaction. J Clin Microbiol. 1993 Jun;31(6):1439–1443. doi: 10.1128/jcm.31.6.1439-1443.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Stoleru G. H., Le Minor L., Lhéritier A. M. Polynucleotide sequence divergence among strains of Salmonella sub-genus IV and closely related organisms. Ann Microbiol (Paris) 1976 May-Jun;127(4):477–486. [PubMed] [Google Scholar]
  32. Swenson D. L., Clegg S., Old D. C. The frequency of fim genes among Salmonella serovars. Microb Pathog. 1991 Jun;10(6):487–492. doi: 10.1016/0882-4010(91)90115-q. [DOI] [PubMed] [Google Scholar]
  33. Way J. S., Josephson K. L., Pillai S. D., Abbaszadegan M., Gerba C. P., Pepper I. L. Specific detection of Salmonella spp. by multiplex polymerase chain reaction. Appl Environ Microbiol. 1993 May;59(5):1473–1479. doi: 10.1128/aem.59.5.1473-1479.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Wheatcroft R., Watson R. J. A Positive Strain Identification Method for Rhizobium meliloti. Appl Environ Microbiol. 1988 Feb;54(2):574–576. doi: 10.1128/aem.54.2.574-576.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Widjojoatmodjo M. N., Fluit A. C., Torensma R., Keller B. H., Verhoef J. Evaluation of the magnetic immuno PCR assay for rapid detection of Salmonella. Eur J Clin Microbiol Infect Dis. 1991 Nov;10(11):935–938. doi: 10.1007/BF02005447. [DOI] [PubMed] [Google Scholar]
  36. Wren B. W., Tabaqchali S. Detection of pathogenic Yersinia enterocolitica by the polymerase chain reaction. Lancet. 1990 Sep 15;336(8716):693–693. doi: 10.1016/0140-6736(90)92191-j. [DOI] [PubMed] [Google Scholar]
  37. Wyatt G. M., Langley M. N., Lee H. A., Morgan M. R. Further studies on the feasibility of one-day Salmonella detection by enzyme-linked immunosorbent assay. Appl Environ Microbiol. 1993 May;59(5):1383–1390. doi: 10.1128/aem.59.5.1383-1390.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES