Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1996 Dec;62(12):4329–4339. doi: 10.1128/aem.62.12.4329-4339.1996

Population analysis in a denitrifying sand filter: conventional and in situ identification of Paracoccus spp. in methanol-fed biofilms.

A Neef 1, A Zaglauer 1, H Meier 1, R Amann 1, H Lemmer 1, K H Schleifer 1
PMCID: PMC168261  PMID: 8953706

Abstract

The microbial community of a denitrifying sand filter in a municipal wastewater treatment plant was examined by conventional and molecular techniques to identify the bacteria actively involved in the removal of nitrate. In this system, denitrification is carried out as the last step of water treatment by biofilms growing on quartz grains with methanol as a supplemented carbon source. The biofilms are quite irregular, having a median thickness of 13 to 20 microns. Fatty acid analysis of 56 denitrifying isolates indicated the occurrence of Paracoccus spp. in the sand filter. 16S rRNA-targeted probes were designed for this genus and the species cluster Paracoccus denitrificans-Paracoccus versutus and tested for specificity by whole-cell hybridization. Stringency requirements for the probes were adjusted by use of a formamide concentration gradient to achieve complete discrimination of even highly similar target sequences. Whole-cell hybridization confirmed that members of the genus Paracoccus were abundant among the isolates. Twenty-seven of the 56 isolates hybridized with the genus-specific probes. In situ hybridization identified dense aggregates of paracocci in detached biofilms. Probes complementary to the type strains of P. denitrificans and P. versutus did not hybridize to cells in the biofilms, suggesting the presence of a new Paracoccus species in the sand filter. Analysis using confocal laser scanning microscopy detected spherical aggregates of morphologically identical cells exhibiting a uniform fluorescence. Cell quantification was performed after thorough disruption of the biofilms and filtration onto polycarbonate filters. An average of 3.5% of total cell counts corresponded to a Paracoccus sp., whereas in a parallel sand filter with no supplemented methanol, and no measurable denitrification, only very few paracocci (0.07% of cells stained with 4',6-diamidino-2-phenylindole) could be detected. Hyphomicrobium spp. constituted approximately 2% of all cells in the denitrifying unit and could not be detected in the regular sand filter. This clear link between in situ abundance and denitrification suggests an active participation of paracocci and hyphomicrobia in the process. Possible selective advantages favoring the paracocci in this habitat are discussed.

Full Text

The Full Text of this article is available as a PDF (468.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amann R. I., Binder B. J., Olson R. J., Chisholm S. W., Devereux R., Stahl D. A. Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol. 1990 Jun;56(6):1919–1925. doi: 10.1128/aem.56.6.1919-1925.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Amann R. I., Krumholz L., Stahl D. A. Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. J Bacteriol. 1990 Feb;172(2):762–770. doi: 10.1128/jb.172.2.762-770.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Amann R. I., Ludwig W., Schleifer K. H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev. 1995 Mar;59(1):143–169. doi: 10.1128/mr.59.1.143-169.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Attwood M. M., Harder W. A rapid and specific enrichment procedure for Hyphomicrobium spp. Antonie Van Leeuwenhoek. 1972;38(3):369–377. doi: 10.1007/BF02328108. [DOI] [PubMed] [Google Scholar]
  5. Brosius J., Dull T. J., Sleeter D. D., Noller H. F. Gene organization and primary structure of a ribosomal RNA operon from Escherichia coli. J Mol Biol. 1981 May 15;148(2):107–127. doi: 10.1016/0022-2836(81)90508-8. [DOI] [PubMed] [Google Scholar]
  6. Carter J. P., Hsaio Y. H., Spiro S., Richardson D. J. Soil and sediment bacteria capable of aerobic nitrate respiration. Appl Environ Microbiol. 1995 Aug;61(8):2852–2858. doi: 10.1128/aem.61.8.2852-2858.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Davies K. J., Lloyd D., Boddy L. The effect of oxygen on denitrification in Paracoccus denitrificans and Pseudomonas aeruginosa. J Gen Microbiol. 1989 Sep;135(9):2445–2451. doi: 10.1099/00221287-135-9-2445. [DOI] [PubMed] [Google Scholar]
  8. Gamble T. N., Betlach M. R., Tiedje J. M. Numerically dominant denitrifying bacteria from world soils. Appl Environ Microbiol. 1977 Apr;33(4):926–939. doi: 10.1128/aem.33.4.926-939.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Katayama Y., Hiraishi A., Kuraishi H. Paracoccus thiocyanatus sp. nov., a new species of thiocyanate-utilizing facultative chemolithotroph, and transfer of Thiobacillus versutus to the genus Paracoccus as Paracoccus versutus comb. nov. with emendation of the genus. Microbiology. 1995 Jun;141(Pt 6):1469–1477. doi: 10.1099/13500872-141-6-1469. [DOI] [PubMed] [Google Scholar]
  10. Knowles R. Denitrification. Microbiol Rev. 1982 Mar;46(1):43–70. doi: 10.1128/mr.46.1.43-70.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lathe R. Synthetic oligonucleotide probes deduced from amino acid sequence data. Theoretical and practical considerations. J Mol Biol. 1985 May 5;183(1):1–12. doi: 10.1016/0022-2836(85)90276-1. [DOI] [PubMed] [Google Scholar]
  12. Ludwig W., Mittenhuber G., Friedrich C. G. Transfer of Thiosphaera pantotropha to Paracoccus denitrificans. Int J Syst Bacteriol. 1993 Apr;43(2):363–367. doi: 10.1099/00207713-43-2-363. [DOI] [PubMed] [Google Scholar]
  13. Ludwig W., Schleifer K. H. Bacterial phylogeny based on 16S and 23S rRNA sequence analysis. FEMS Microbiol Rev. 1994 Oct;15(2-3):155–173. doi: 10.1111/j.1574-6976.1994.tb00132.x. [DOI] [PubMed] [Google Scholar]
  14. Maidak B. L., Larsen N., McCaughey M. J., Overbeek R., Olsen G. J., Fogel K., Blandy J., Woese C. R. The Ribosomal Database Project. Nucleic Acids Res. 1994 Sep;22(17):3485–3487. doi: 10.1093/nar/22.17.3485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Manz W., Amann R., Ludwig W., Vancanneyt M., Schleifer K. H. Application of a suite of 16S rRNA-specific oligonucleotide probes designed to investigate bacteria of the phylum cytophaga-flavobacter-bacteroides in the natural environment. Microbiology. 1996 May;142(Pt 5):1097–1106. doi: 10.1099/13500872-142-5-1097. [DOI] [PubMed] [Google Scholar]
  16. Misicka A., Lipkowski A. W., Horvath R., Davis P., Kramer T. H., Yamamura H. I., Hruby V. J. Topographical requirements for delta opioid ligands: common structural features of dermenkephalin and deltorphin. Life Sci. 1992;51(13):1025–1032. doi: 10.1016/0024-3205(92)90501-f. [DOI] [PubMed] [Google Scholar]
  17. Moss C. W., Wallace P. L., Hollis D. G., Weaver R. E. Cultural and chemical characterization of CDC groups EO-2, M-5, and M-6, Moraxella (Moraxella) species, Oligella urethralis, Acinetobacter species, and Psychrobacter immobilis. J Clin Microbiol. 1988 Mar;26(3):484–492. doi: 10.1128/jcm.26.3.484-492.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Ohara M., Katayama Y., Tsuzaki M., Nakamoto S., Kuraishi H. Paracoccus kocurii sp. nov., a tetramethylammonium-assimilating bacterium. Int J Syst Bacteriol. 1990 Jul;40(3):292–296. doi: 10.1099/00207713-40-3-292. [DOI] [PubMed] [Google Scholar]
  19. Ramsing N. B., Kühl M., Jørgensen B. B. Distribution of sulfate-reducing bacteria, O2, and H2S in photosynthetic biofilms determined by oligonucleotide probes and microelectrodes. Appl Environ Microbiol. 1993 Nov;59(11):3840–3849. doi: 10.1128/aem.59.11.3840-3849.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Reasoner D. J., Geldreich E. E. A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol. 1985 Jan;49(1):1–7. doi: 10.1128/aem.49.1.1-7.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Roller C., Wagner M., Amann R., Ludwig W., Schleifer K. H. In situ probing of gram-positive bacteria with high DNA G + C content using 23S rRNA-targeted oligonucleotides. Microbiology. 1994 Oct;140(Pt 10):2849–2858. doi: 10.1099/00221287-140-10-2849. [DOI] [PubMed] [Google Scholar]
  22. Sperl G. T., Hoare D. S. Denitrification with methanol: a selective enrichment for Hyphomicrobium species. J Bacteriol. 1971 Nov;108(2):733–736. doi: 10.1128/jb.108.2.733-736.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Trebesius K., Amann R., Ludwig W., Mühlegger K., Schleifer K. H. Identification of Whole Fixed Bacterial Cells with Nonradioactive 23S rRNA-Targeted Polynucleotide Probes. Appl Environ Microbiol. 1994 Sep;60(9):3228–3235. doi: 10.1128/aem.60.9.3228-3235.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Tsien H. C., Bratina B. J., Tsuji K., Hanson R. S. Use of oligodeoxynucleotide signature probes for identification of physiological groups of methylotrophic bacteria. Appl Environ Microbiol. 1990 Sep;56(9):2858–2865. doi: 10.1128/aem.56.9.2858-2865.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Urakami T., Araki H., Oyanagi H., Suzuki K., Komagata K. Paracoccus aminophilus sp. nov. and Paracoccus aminovorans sp. nov., which utilize N,N-dimethylformamide. Int J Syst Bacteriol. 1990 Jul;40(3):287–291. doi: 10.1099/00207713-40-3-287. [DOI] [PubMed] [Google Scholar]
  26. Vedenina I. Ia, Govorukhina N. I. Formirovanie metilotrofnogo denitrifitsiruiushchego soobshchestva v sisteme ochistki stochnykh vod ot nitratov. Mikrobiologiia. 1988 Mar-Apr;57(2):320–328. [PubMed] [Google Scholar]
  27. Wagner M., Amann R., Lemmer H., Schleifer K. H. Probing activated sludge with oligonucleotides specific for proteobacteria: inadequacy of culture-dependent methods for describing microbial community structure. Appl Environ Microbiol. 1993 May;59(5):1520–1525. doi: 10.1128/aem.59.5.1520-1525.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Wahl G. M., Berger S. L., Kimmel A. R. Molecular hybridization of immobilized nucleic acids: theoretical concepts and practical considerations. Methods Enzymol. 1987;152:399–407. doi: 10.1016/0076-6879(87)52046-8. [DOI] [PubMed] [Google Scholar]
  29. Walther-Mauruschat A., Aragno M., Mayer F., Schlegel H. G. Micromorphology of Gram-negative hydrogen bacteria. II. Cell envelope, membranes, and cytoplasmic inclusions. Arch Microbiol. 1977 Aug 26;114(2):101–110. doi: 10.1007/BF00410770. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES