Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1996 Dec;62(12):4367–4373. doi: 10.1128/aem.62.12.4367-4373.1996

Engineering Bacillus thuringiensis bioinsecticides with an indigenous site-specific recombination system.

J A Baum 1, M Kakefuda 1, C Gawron-Burke 1
PMCID: PMC168264  PMID: 8953709

Abstract

The cry genes of Bacillus thuringiensis encode a diverse group of crystal-forming proteins that exhibit insecticidal activity, particularly against the larvae of lepidopteran, coleopteran, and dipteran insects. The efficacy of B. thuringiensis-based biopesticides may be improved through the genetic manipulation of these genes. A gene transfer system has been developed for the introduction and maintenance of cloned insecticidal cry genes on small plasmids in B. thuringiensis. This vector system combines a B. thuringiensis plasmid replicon and an indigenous site-specific recombination system that allows for the selective removal of ancillary or foreign DNA from the recombinant bacterium after introduction of the Cry-encoding plasmid. The site-specific recombination system is useful for engineering strains with unique combinations of cry genes, resulting in new active ingredients with improved insecticidal properties.

Full Text

The Full Text of this article is available as a PDF (340.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams L. F., Mathewes S., O'Hara P., Petersen A., Gürtler H. Elucidation of the mechanism of CryIIIA overproduction in a mutagenized strain of Bacillus thuringiensis var. tenebrionis. Mol Microbiol. 1994 Oct;14(2):381–389. doi: 10.1111/j.1365-2958.1994.tb01298.x. [DOI] [PubMed] [Google Scholar]
  2. Agaisse H., Lereclus D. Expression in Bacillus subtilis of the Bacillus thuringiensis cryIIIA toxin gene is not dependent on a sporulation-specific sigma factor and is increased in a spo0A mutant. J Bacteriol. 1994 Aug;176(15):4734–4741. doi: 10.1128/jb.176.15.4734-4741.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Arantes O., Lereclus D. Construction of cloning vectors for Bacillus thuringiensis. Gene. 1991 Dec 1;108(1):115–119. doi: 10.1016/0378-1119(91)90495-w. [DOI] [PubMed] [Google Scholar]
  4. Baum J. A., Coyle D. M., Gilbert M. P., Jany C. S., Gawron-Burke C. Novel cloning vectors for Bacillus thuringiensis. Appl Environ Microbiol. 1990 Nov;56(11):3420–3428. doi: 10.1128/aem.56.11.3420-3428.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Baum J. A., Gilbert M. P. Characterization and comparative sequence analysis of replication origins from three large Bacillus thuringiensis plasmids. J Bacteriol. 1991 Sep;173(17):5280–5289. doi: 10.1128/jb.173.17.5280-5289.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Baum J. A., Malvar T. Regulation of insecticidal crystal protein production in Bacillus thuringiensis. Mol Microbiol. 1995 Oct;18(1):1–12. doi: 10.1111/j.1365-2958.1995.mmi_18010001.x. [DOI] [PubMed] [Google Scholar]
  7. Baum J. A. Tn5401, a new class II transposable element from Bacillus thuringiensis. J Bacteriol. 1994 May;176(10):2835–2845. doi: 10.1128/jb.176.10.2835-2845.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Baum J. A. TnpI recombinase: identification of sites within Tn5401 required for TnpI binding and site-specific recombination. J Bacteriol. 1995 Jul;177(14):4036–4042. doi: 10.1128/jb.177.14.4036-4042.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chak K. F., Tseng M. Y., Yamamoto T. Expression of the crystal protein gene under the control of the alpha-amylase promoter in Bacillus thuringiensis strains. Appl Environ Microbiol. 1994 Jul;60(7):2304–2310. doi: 10.1128/aem.60.7.2304-2310.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Chambers J. A., Jelen A., Gilbert M. P., Jany C. S., Johnson T. B., Gawron-Burke C. Isolation and characterization of a novel insecticidal crystal protein gene from Bacillus thuringiensis subsp. aizawai. J Bacteriol. 1991 Jul;173(13):3966–3976. doi: 10.1128/jb.173.13.3966-3976.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Chang C., Yu Y. M., Dai S. M., Law S. K., Gill S. S. High-level cryIVD and cytA gene expression in Bacillus thuringiensis does not require the 20-kilodalton protein, and the coexpressed gene products are synergistic in their toxicity to mosquitoes. Appl Environ Microbiol. 1993 Mar;59(3):815–821. doi: 10.1128/aem.59.3.815-821.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Donovan W. P., Dankocsik C. C., Gilbert M. P., Gawron-Burke M. C., Groat R. G., Carlton B. C. Amino acid sequence and entomocidal activity of the P2 crystal protein. An insect toxin from Bacillus thuringiensis var. kurstaki. J Biol Chem. 1988 Jan 5;263(1):561–567. [PubMed] [Google Scholar]
  13. Donovan W. P., Rupar M. J., Slaney A. C., Malvar T., Gawron-Burke M. C., Johnson T. B. Characterization of two genes encoding Bacillus thuringiensis insecticidal crystal proteins toxic to Coleoptera species. Appl Environ Microbiol. 1992 Dec;58(12):3921–3927. doi: 10.1128/aem.58.12.3921-3927.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Feinberg A. P., Vogelstein B. "A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity". Addendum. Anal Biochem. 1984 Feb;137(1):266–267. doi: 10.1016/0003-2697(84)90381-6. [DOI] [PubMed] [Google Scholar]
  15. Gawron-Burke C., Baum J. A. Genetic manipulation of Bacillus thuringiensis insecticidal crystal protein genes in bacteria. Genet Eng (N Y) 1991;13:237–263. doi: 10.1007/978-1-4615-3760-1_11. [DOI] [PubMed] [Google Scholar]
  16. Gill S. S., Cowles E. A., Pietrantonio P. V. The mode of action of Bacillus thuringiensis endotoxins. Annu Rev Entomol. 1992;37:615–636. doi: 10.1146/annurev.en.37.010192.003151. [DOI] [PubMed] [Google Scholar]
  17. Gill S. S. Mechanism of action of Bacillus thuringiensis toxins. Mem Inst Oswaldo Cruz. 1995 Jan-Feb;90(1):69–74. doi: 10.1590/s0074-02761995000100016. [DOI] [PubMed] [Google Scholar]
  18. Humphreys G. O., Willshaw G. A., Smith H. R., Anderson E. S. Mutagenesis of plasmid DNA with hydroxylamine: isolation of mutants of multi-copy plasmids. Mol Gen Genet. 1976 Apr 23;145(1):101–108. doi: 10.1007/BF00331564. [DOI] [PubMed] [Google Scholar]
  19. Höfte H., Whiteley H. R. Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol Rev. 1989 Jun;53(2):242–255. doi: 10.1128/mr.53.2.242-255.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kalman S., Kiehne K. L., Cooper N., Reynoso M. S., Yamamoto T. Enhanced production of insecticidal proteins in Bacillus thuringiensis strains carrying an additional crystal protein gene in their chromosomes. Appl Environ Microbiol. 1995 Aug;61(8):3063–3068. doi: 10.1128/aem.61.8.3063-3068.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kilby N. J., Snaith M. R., Murray J. A. Site-specific recombinases: tools for genome engineering. Trends Genet. 1993 Dec;9(12):413–421. doi: 10.1016/0168-9525(93)90104-p. [DOI] [PubMed] [Google Scholar]
  22. Kronstad J. W., Schnepf H. E., Whiteley H. R. Diversity of locations for Bacillus thuringiensis crystal protein genes. J Bacteriol. 1983 Apr;154(1):419–428. doi: 10.1128/jb.154.1.419-428.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lereclus D., Vallade M., Chaufaux J., Arantes O., Rambaud S. Expansion of insecticidal host range of Bacillus thuringiensis by in vivo genetic recombination. Biotechnology (N Y) 1992 Apr;10(4):418–421. doi: 10.1038/nbt0492-418. [DOI] [PubMed] [Google Scholar]
  24. Malvar T., Baum J. A. Tn5401 disruption of the spo0F gene, identified by direct chromosomal sequencing, results in CryIIIA overproduction in Bacillus thuringiensis. J Bacteriol. 1994 Aug;176(15):4750–4753. doi: 10.1128/jb.176.15.4750-4753.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Malvar T., Gawron-Burke C., Baum J. A. Overexpression of Bacillus thuringiensis HknA, a histidine protein kinase homology, bypasses early Spo mutations that result in CryIIIA overproduction. J Bacteriol. 1994 Aug;176(15):4742–4749. doi: 10.1128/jb.176.15.4742-4749.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Mettus A. M., Macaluso A. Expression of Bacillus thuringiensis delta-endotoxin genes during vegetative growth. Appl Environ Microbiol. 1990 Apr;56(4):1128–1134. doi: 10.1128/aem.56.4.1128-1134.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Moar W. J., Pusztai-Carey M., Van Faassen H., Bosch D., Frutos R., Rang C., Luo K., Adang M. J. Development of Bacillus thuringiensis CryIC Resistance by Spodoptera exigua (Hubner) (Lepidoptera: Noctuidae). Appl Environ Microbiol. 1995 Jun;61(6):2086–2092. doi: 10.1128/aem.61.6.2086-2092.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Rupar M. J., Donovan W. P., Groat R. G., Slaney A. C., Mattison J. W., Johnson T. B., Charles J. F., Dumanoir V. C., de Barjac H. Two novel strains of Bacillus thuringiensis toxic to coleopterans. Appl Environ Microbiol. 1991 Nov;57(11):3337–3344. doi: 10.1128/aem.57.11.3337-3344.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Wu D., Johnson J. J., Federici B. A. Synergism of mosquitocidal toxicity between CytA and CryIVD proteins using inclusions produced from cloned genes of Bacillus thuringiensis. Mol Microbiol. 1994 Sep;13(6):965–972. doi: 10.1111/j.1365-2958.1994.tb00488.x. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES