Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1996 Dec;62(12):4381–4387. doi: 10.1128/aem.62.12.4381-4387.1996

Production of pediocin AcH by Lactobacillus plantarum WHE 92 isolated from cheese.

S Ennahar 1, D Aoude-Werner 1, O Sorokine 1, A Van Dorsselaer 1, F Bringel 1, J C Hubert 1, C Hasselmann 1
PMCID: PMC168265  PMID: 8953710

Abstract

Among 1,962 bacterial isolates from a smear-surface soft cheese (Munster cheese) screened for activity against Listeria monocytogenes, six produced antilisterial compounds other than organic acids. The bacterial strain WHE 92, which displayed the strongest antilisterial effect, was identified at the DNA level as Lactobacillus plantarum. The proteinaceous nature, narrow inhibitory spectrum, and bactericidal mode of action of the antilisterial compound produced by this bacterium suggested that it was a bacteriocin. Purification to homogeneity and sequencing of this bacteriocin showed that it was a 4.6-kDa, 44-amino-acid peptide, the primary structure of which was identical to that of pediocin AcH produced by different Pediococcus acidilactici strains. We report the first case of the same bacteriocin appearing naturally with bacteria of different genera. Whereas the production of pediocin AcH from P. acidilactici H was considerably reduced when the final pH of the medium exceeded 5.0, no reduction in the production of pediocin AcH from L. plantarum WHE 92 was observed when the pH of the medium was up to 6.0. This fact is important from an industrial angle. As the pH of dairy products is often higher than 5.0, L. plantarum WHE 92, which develops particularly well in cheeses, could constitute an effective means of biological combat against L. monocytogenes in this type of foodstuff.

Full Text

The Full Text of this article is available as a PDF (291.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allison G. E., Worobo R. W., Stiles M. E., Klaenhammer T. R. Heterologous expression of the lactacin F peptides by Carnobacterium piscicola LV17. Appl Environ Microbiol. 1995 Apr;61(4):1371–1377. doi: 10.1128/aem.61.4.1371-1377.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barefoot S. F., Klaenhammer T. R. Detection and activity of lactacin B, a bacteriocin produced by Lactobacillus acidophilus. Appl Environ Microbiol. 1983 Jun;45(6):1808–1815. doi: 10.1128/aem.45.6.1808-1815.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Biswas S. R., Ray P., Johnson M. C., Ray B. Influence of Growth Conditions on the Production of a Bacteriocin, Pediocin AcH, by Pediococcus acidilactici H. Appl Environ Microbiol. 1991 Apr;57(4):1265–1267. doi: 10.1128/aem.57.4.1265-1267.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bringel F., Curk M. C., Hubert J. C. Characterization of lactobacilli by Southern-type hybridization with a Lactobacillus plantarum pyrDFE probe. Int J Syst Bacteriol. 1996 Apr;46(2):588–594. doi: 10.1099/00207713-46-2-588. [DOI] [PubMed] [Google Scholar]
  5. Broadbent J. R., Kondo J. K. Genetic construction of nisin-producing Lactococcus lactis subsp. cremoris and analysis of a rapid method for conjugation. Appl Environ Microbiol. 1991 Feb;57(2):517–524. doi: 10.1128/aem.57.2.517-524.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Diep D. B., Håvarstein L. S., Nissen-Meyer J., Nes I. F. The gene encoding plantaricin A, a bacteriocin from Lactobacillus plantarum C11, is located on the same transcription unit as an agr-like regulatory system. Appl Environ Microbiol. 1994 Jan;60(1):160–166. doi: 10.1128/aem.60.1.160-166.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Farber J. M., Peterkin P. I. Listeria monocytogenes, a food-borne pathogen. Microbiol Rev. 1991 Sep;55(3):476–511. doi: 10.1128/mr.55.3.476-511.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Garver K. I., Muriana P. M. Detection, identification and characterization of bacteriocin-producing lactic acid bacteria from retail food products. Int J Food Microbiol. 1993 Sep;19(4):241–258. doi: 10.1016/0168-1605(93)90017-b. [DOI] [PubMed] [Google Scholar]
  9. Gibson E. M., Chace N. M., London S. B., London J. Transfer of plasmid-mediated antibiotic resistance from streptococci to lactobacilli. J Bacteriol. 1979 Jan;137(1):614–619. doi: 10.1128/jb.137.1.614-619.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gireesh T., Davidson B. E., Hillier A. J. Conjugal transfer in Lactococcus lactis of a 68-kilobase-pair chromosomal fragment containing the structural gene for the peptide bacteriocin nisin. Appl Environ Microbiol. 1992 May;58(5):1670–1676. doi: 10.1128/aem.58.5.1670-1676.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gonzalez C. F., Kunka B. S. Plasmid transfer in Pediococcus spp.: intergeneric and intrageneric transfer of pIP501. Appl Environ Microbiol. 1983 Jul;46(1):81–89. doi: 10.1128/aem.46.1.81-89.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gonzalez C. F., Kunka B. S. Transfer of Sucrose-Fermenting Ability and Nisin Production Phenotype among Lactic Streptococci. Appl Environ Microbiol. 1985 Mar;49(3):627–633. doi: 10.1128/aem.49.3.627-633.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. González B., Arca P., Mayo B., Suárez J. E. Detection, purification, and partial characterization of plantaricin C, a bacteriocin produced by a Lactobacillus plantarum strain of dairy origin. Appl Environ Microbiol. 1994 Jun;60(6):2158–2163. doi: 10.1128/aem.60.6.2158-2163.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Henderson J. T., Chopko A. L., van Wassenaar P. D. Purification and primary structure of pediocin PA-1 produced by Pediococcus acidilactici PAC-1.0. Arch Biochem Biophys. 1992 May 15;295(1):5–12. doi: 10.1016/0003-9861(92)90480-k. [DOI] [PubMed] [Google Scholar]
  15. Jeppesen V. F., Huss H. H. Characteristics and antagonistic activity of lactic acid bacteria isolated from chilled fish products. Int J Food Microbiol. 1993 Jun 1;18(4):305–320. doi: 10.1016/0168-1605(93)90153-8. [DOI] [PubMed] [Google Scholar]
  16. Jiménez-Díaz R., Ruiz-Barba J. L., Cathcart D. P., Holo H., Nes I. F., Sletten K. H., Warner P. J. Purification and partial amino acid sequence of plantaricin S, a bacteriocin produced by Lactobacillus plantarum LPCO10, the activity of which depends on the complementary action of two peptides. Appl Environ Microbiol. 1995 Dec;61(12):4459–4463. doi: 10.1128/aem.61.12.4459-4463.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Klaenhammer T. R. Bacteriocins of lactic acid bacteria. Biochimie. 1988 Mar;70(3):337–349. doi: 10.1016/0300-9084(88)90206-4. [DOI] [PubMed] [Google Scholar]
  18. Klaenhammer T. R. Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol Rev. 1993 Sep;12(1-3):39–85. doi: 10.1111/j.1574-6976.1993.tb00012.x. [DOI] [PubMed] [Google Scholar]
  19. Lepage P., Bitsch F., Roecklin D., Keppi E., Dimarcq J. L., Reichhart J. M., Hoffmann J. A., Roitsch C., Van Dorseelaer A. Determination of disulfide bridges in natural and recombinant insect defensin A. Eur J Biochem. 1991 Mar 28;196(3):735–742. doi: 10.1111/j.1432-1033.1991.tb15872.x. [DOI] [PubMed] [Google Scholar]
  20. Lewus C. B., Kaiser A., Montville T. J. Inhibition of food-borne bacterial pathogens by bacteriocins from lactic acid bacteria isolated from meat. Appl Environ Microbiol. 1991 Jun;57(6):1683–1688. doi: 10.1128/aem.57.6.1683-1688.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Luchansky J. B., Glass K. A., Harsono K. D., Degnan A. J., Faith N. G., Cauvin B., Baccus-Taylor G., Arihara K., Bater B., Maurer A. J. Genomic analysis of Pediococcus starter cultures used to control Listeria monocytogenes in turkey summer sausage. Appl Environ Microbiol. 1992 Sep;58(9):3053–3059. doi: 10.1128/aem.58.9.3053-3059.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Marugg J. D., Gonzalez C. F., Kunka B. S., Ledeboer A. M., Pucci M. J., Toonen M. Y., Walker S. A., Zoetmulder L. C., Vandenbergh P. A. Cloning, expression, and nucleotide sequence of genes involved in production of pediocin PA-1, and bacteriocin from Pediococcus acidilactici PAC1.0. Appl Environ Microbiol. 1992 Aug;58(8):2360–2367. doi: 10.1128/aem.58.8.2360-2367.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Motlagh A. M., Bhunia A. K., Szostek F., Hansen T. R., Johnson M. C., Ray B. Nucleotide and amino acid sequence of pap-gene (pediocin AcH production) in Pediococcus acidilactici H. Lett Appl Microbiol. 1992 Aug;15(2):45–48. doi: 10.1111/j.1472-765x.1992.tb00721.x. [DOI] [PubMed] [Google Scholar]
  24. Motlagh A., Bukhtiyarova M., Ray B. Complete nucleotide sequence of pSMB 74, a plasmid encoding the production of pediocin AcH in Pediococcus acidilactici. Lett Appl Microbiol. 1994 Jun;18(6):305–312. doi: 10.1111/j.1472-765x.1994.tb00876.x. [DOI] [PubMed] [Google Scholar]
  25. Mundt J. O., Beattie W. G., Wieland F. R. Pediococci residing on plants. J Bacteriol. 1969 Jun;98(3):938–942. doi: 10.1128/jb.98.3.938-942.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Muriana P. M., Klaenhammer T. R. Conjugal Transfer of Plasmid-Encoded Determinants for Bacteriocin Production and Immunity in Lactobacillus acidophilus 88. Appl Environ Microbiol. 1987 Mar;53(3):553–560. doi: 10.1128/aem.53.3.553-560.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Neve H., Geis A., Teuber M. Conjugal transfer and characterization of bacteriocin plasmids in group N (lactic acid) streptococci. J Bacteriol. 1984 Mar;157(3):833–838. doi: 10.1128/jb.157.3.833-838.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Nissen-Meyer J., Holo H., Håvarstein L. S., Sletten K., Nes I. F. A novel lactococcal bacteriocin whose activity depends on the complementary action of two peptides. J Bacteriol. 1992 Sep;174(17):5686–5692. doi: 10.1128/jb.174.17.5686-5692.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Nissen-Meyer J., Larsen A. G., Sletten K., Daeschel M., Nes I. F. Purification and characterization of plantaricin A, a Lactobacillus plantarum bacteriocin whose activity depends on the action of two peptides. J Gen Microbiol. 1993 Sep;139(9):1973–1978. doi: 10.1099/00221287-139-9-1973. [DOI] [PubMed] [Google Scholar]
  30. Schved F., Lalazar A., Henis Y., Juven B. J. Purification, partial characterization and plasmid-linkage of pediocin SJ-1, a bacteriocin produced by Pediococcus acidilactici. J Appl Bacteriol. 1993 Jan;74(1):67–77. doi: 10.1111/j.1365-2672.1993.tb02998.x. [DOI] [PubMed] [Google Scholar]
  31. Steele J. L., McKay L. L. Partial characterization of the genetic basis for sucrose metabolism and nisin production in Streptococcus lactis. Appl Environ Microbiol. 1986 Jan;51(1):57–64. doi: 10.1128/aem.51.1.57-64.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Stoddard G. W., Petzel J. P., van Belkum M. J., Kok J., McKay L. L. Molecular analyses of the lactococcin A gene cluster from Lactococcus lactis subsp. lactis biovar diacetylactis WM4. Appl Environ Microbiol. 1992 Jun;58(6):1952–1961. doi: 10.1128/aem.58.6.1952-1961.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Sung M. W., Johnson J. T., Van Dongen G., Whiteside T. L. Protective effects of interferon-gamma on squamous-cell carcinoma of head and neck targets in antibody-dependent cellular cytotoxicity mediated by human natural killer cells. Int J Cancer. 1996 May 3;66(3):393–399. doi: 10.1002/(SICI)1097-0215(19960503)66:3<393::AID-IJC21>3.0.CO;2-B. [DOI] [PubMed] [Google Scholar]
  34. Tagg J. R., McGiven A. R. Assay system for bacteriocins. Appl Microbiol. 1971 May;21(5):943–943. doi: 10.1128/am.21.5.943-943.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Terzaghi B. E., Sandine W. E. Improved medium for lactic streptococci and their bacteriophages. Appl Microbiol. 1975 Jun;29(6):807–813. doi: 10.1128/am.29.6.807-813.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Tsai H. J., Sandine W. E. Conjugal transfer of nisin plasmid genes from Streptococcus lactis 7962 to Leuconostoc dextranicum 181. Appl Environ Microbiol. 1987 Feb;53(2):352–357. doi: 10.1128/aem.53.2.352-357.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Vanderslice P., Copeland W. C., Robertus J. D. Cloning and nucleotide sequence of wild type and a mutant histidine decarboxylase from Lactobacillus 30a. J Biol Chem. 1986 Nov 15;261(32):15186–15191. [PubMed] [Google Scholar]
  38. Vescovo M., Morelli L., Bottazzi V., Gasson M. J. Conjugal Transfer of Broad-Host-Range Plasmid pAMbeta1 into Enteric Species of Lactic Acid Bacteria. Appl Environ Microbiol. 1983 Sep;46(3):753–755. doi: 10.1128/aem.46.3.753-755.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. West C. A., Warner P. J. Plasmid profiles and transfer of plasmid-encoded antibiotic resistance in Lactobacillus plantarum. Appl Environ Microbiol. 1985 Nov;50(5):1319–1321. doi: 10.1128/aem.50.5.1319-1321.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. van Belkum M. J., Kok J., Venema G., Holo H., Nes I. F., Konings W. N., Abee T. The bacteriocin lactococcin A specifically increases permeability of lactococcal cytoplasmic membranes in a voltage-independent, protein-mediated manner. J Bacteriol. 1991 Dec;173(24):7934–7941. doi: 10.1128/jb.173.24.7934-7941.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. van Belkum M. J., Stiles M. E. Molecular characterization of genes involved in the production of the bacteriocin leucocin A from Leuconostoc gelidum. Appl Environ Microbiol. 1995 Oct;61(10):3573–3579. doi: 10.1128/aem.61.10.3573-3579.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES