Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1996 Dec;62(12):4410–4416. doi: 10.1128/aem.62.12.4410-4416.1996

Purification and amino acid sequences of piscicocins V1a and V1b, two class IIa bacteriocins secreted by Carnobacterium piscicola V1 that display significantly different levels of specific inhibitory activity.

P Bhugaloo-Vial 1, X Dousset 1, A Metivier 1, O Sorokine 1, P Anglade 1, P Boyaval 1, D Marion 1
PMCID: PMC168268  PMID: 8953713

Abstract

Two bacteriocins produced by Carnobacterium piscicola V1 were purified and characterized. Piscicocin V1a (molecular mass = 4,416 Da) and piscicocin V1b (molecular mass = 4,526 Da) are nonlantibiotic, small, heat-stable antibacterial peptides. Piscicocin V1b is identical to carnobacteriocin BM1, while piscicocin V1a is a new bacteriocin. Its complete sequence of 44 amino acid residues has been determined. Piscicocin V1a belongs to the class IIa bacteriocins having the consensus YGNGV motif. These peptides inhibit various gram-positive bacteria, including Listeria monocytogenes. Piscicocin V1a is approximately 100 times more active than piscicocin V1b against indicator strains. However, the antagonistic spectrum is the same for both piscicocins. Comparison of these results with the analysis of the amino acid sequence and secondary structure predictions suggests that (i) the conserved N-terminal conserved domain is involved in the receptor recognition and therefore in an "all-or-none" response against target bacterial cells and (ii) the C-terminal variable and hydrophobic domain determines membrane anchoring and therefore the intensity of the antagonist response.

Full Text

The Full Text of this article is available as a PDF (239.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blochet J. E., Chevalier C., Forest E., Pebay-Peyroula E., Gautier M. F., Joudrier P., Pézolet M., Marion D. Complete amino acid sequence of puroindoline, a new basic and cystine-rich protein with a unique tryptophan-rich domain, isolated from wheat endosperm by Triton X-114 phase partitioning. FEBS Lett. 1993 Aug 30;329(3):336–340. doi: 10.1016/0014-5793(93)80249-t. [DOI] [PubMed] [Google Scholar]
  2. Cammue B. P., De Bolle M. F., Schoofs H. M., Terras F. R., Thevissen K., Osborn R. W., Rees S. B., Broekaert W. F. Gene-encoded antimicrobial peptides from plants. Ciba Found Symp. 1994;186:91–106. doi: 10.1002/9780470514658.ch6. [DOI] [PubMed] [Google Scholar]
  3. Chou P. Y., Fasman G. D. Prediction of the secondary structure of proteins from their amino acid sequence. Adv Enzymol Relat Areas Mol Biol. 1978;47:45–148. doi: 10.1002/9780470122921.ch2. [DOI] [PubMed] [Google Scholar]
  4. Cintas L. M., Rodriguez J. M., Fernandez M. F., Sletten K., Nes I. F., Hernandez P. E., Holo H. Isolation and characterization of pediocin L50, a new bacteriocin from Pediococcus acidilactici with a broad inhibitory spectrum. Appl Environ Microbiol. 1995 Jul;61(7):2643–2648. doi: 10.1128/aem.61.7.2643-2648.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Désormeaux A., Blochet J. E., Pézolet M., Marion D. Amino acid sequence of a non-specific wheat phospholipid transfer protein and its conformation as revealed by infrared and Raman spectroscopy. Role of disulfide bridges and phospholipids in the stabilization of the alpha-helix structure. Biochim Biophys Acta. 1992 May 22;1121(1-2):137–152. doi: 10.1016/0167-4838(92)90347-g. [DOI] [PubMed] [Google Scholar]
  6. Eisenberg D., Schwarz E., Komaromy M., Wall R. Analysis of membrane and surface protein sequences with the hydrophobic moment plot. J Mol Biol. 1984 Oct 15;179(1):125–142. doi: 10.1016/0022-2836(84)90309-7. [DOI] [PubMed] [Google Scholar]
  7. Garver K. I., Muriana P. M. Purification and partial amino acid sequence of curvaticin FS47, a heat-stable bacteriocin produced by Lactobacillus curvatus FS47. Appl Environ Microbiol. 1994 Jun;60(6):2191–2195. doi: 10.1128/aem.60.6.2191-2195.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gatineau E., Toma F., Montenay-Garestier T., Takechi M., Fromageot P., Ménez A. Role of tyrosine and tryptophan residues in the structure-activity relationships of a cardiotoxin from Naja nigricollis venom. Biochemistry. 1987 Dec 15;26(25):8046–8055. doi: 10.1021/bi00399a004. [DOI] [PubMed] [Google Scholar]
  9. Gierasch L. M. Signal sequences. Biochemistry. 1989 Feb 7;28(3):923–930. doi: 10.1021/bi00429a001. [DOI] [PubMed] [Google Scholar]
  10. Hastings J. W., Sailer M., Johnson K., Roy K. L., Vederas J. C., Stiles M. E. Characterization of leucocin A-UAL 187 and cloning of the bacteriocin gene from Leuconostoc gelidum. J Bacteriol. 1991 Dec;173(23):7491–7500. doi: 10.1128/jb.173.23.7491-7500.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Jacob L., Zasloff M. Potential therapeutic applications of magainins and other antimicrobial agents of animal origin. Ciba Found Symp. 1994;186:197–223. doi: 10.1002/9780470514658.ch12. [DOI] [PubMed] [Google Scholar]
  12. Jaquinod M., Potier N., Klarskov K., Reymann J. M., Sorokine O., Kieffer S., Barth P., Andriantomanga V., Biellmann J. F., Van Dorsselaer A. Sequence of pig lens aldose reductase and electrospray mass spectrometry of non-covalent and covalent complexes. Eur J Biochem. 1993 Dec 15;218(3):893–903. doi: 10.1111/j.1432-1033.1993.tb18445.x. [DOI] [PubMed] [Google Scholar]
  13. Jeppesen V. F., Huss H. H. Antagonistic activity of two strains of lactic acid bacteria against Listeria monocytogenes and Yersinia enterocolitica in a model fish product at 5 degrees C. Int J Food Microbiol. 1993 Aug;19(3):179–186. doi: 10.1016/0168-1605(93)90075-r. [DOI] [PubMed] [Google Scholar]
  14. Jiménez-Díaz R., Rios-Sánchez R. M., Desmazeaud M., Ruiz-Barba J. L., Piard J. C. Plantaricins S and T, Two New Bacteriocins Produced by Lactobacillus plantarum LPCO10 Isolated from a Green Olive Fermentation. Appl Environ Microbiol. 1993 May;59(5):1416–1424. doi: 10.1128/aem.59.5.1416-1424.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Klaenhammer T. R. Bacteriocins of lactic acid bacteria. Biochimie. 1988 Mar;70(3):337–349. doi: 10.1016/0300-9084(88)90206-4. [DOI] [PubMed] [Google Scholar]
  16. Klaenhammer T. R. Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol Rev. 1993 Sep;12(1-3):39–85. doi: 10.1111/j.1574-6976.1993.tb00012.x. [DOI] [PubMed] [Google Scholar]
  17. Lamb C. J., Ryals J. A., Ward E. R., Dixon R. A. Emerging strategies for enhancing crop resistance to microbial pathogens. Biotechnology (N Y) 1992 Nov;10(11):1436–1445. doi: 10.1038/nbt1192-1436. [DOI] [PubMed] [Google Scholar]
  18. Marugg J. D., Gonzalez C. F., Kunka B. S., Ledeboer A. M., Pucci M. J., Toonen M. Y., Walker S. A., Zoetmulder L. C., Vandenbergh P. A. Cloning, expression, and nucleotide sequence of genes involved in production of pediocin PA-1, and bacteriocin from Pediococcus acidilactici PAC1.0. Appl Environ Microbiol. 1992 Aug;58(8):2360–2367. doi: 10.1128/aem.58.8.2360-2367.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Merrifield R. B., Merrifield E. L., Juvvadi P., Andreu D., Boman H. G. Design and synthesis of antimicrobial peptides. Ciba Found Symp. 1994;186:5–26. [PubMed] [Google Scholar]
  20. Mohana Rao J. K., Argos P. A conformational preference parameter to predict helices in integral membrane proteins. Biochim Biophys Acta. 1986 Jan 30;869(2):197–214. doi: 10.1016/0167-4838(86)90295-5. [DOI] [PubMed] [Google Scholar]
  21. Muriana P. M., Klaenhammer T. R. Purification and partial characterization of lactacin F, a bacteriocin produced by Lactobacillus acidophilus 11088. Appl Environ Microbiol. 1991 Jan;57(1):114–121. doi: 10.1128/aem.57.1.114-121.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Mørtvedt C. I., Nissen-Meyer J., Sletten K., Nes I. F. Purification and amino acid sequence of lactocin S, a bacteriocin produced by Lactobacillus sake L45. Appl Environ Microbiol. 1991 Jun;57(6):1829–1834. doi: 10.1128/aem.57.6.1829-1834.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Quadri L. E., Sailer M., Roy K. L., Vederas J. C., Stiles M. E. Chemical and genetic characterization of bacteriocins produced by Carnobacterium piscicola LV17B. J Biol Chem. 1994 Apr 22;269(16):12204–12211. [PubMed] [Google Scholar]
  24. Schiffer M., Chang C. H., Stevens F. J. The functions of tryptophan residues in membrane proteins. Protein Eng. 1992 Apr;5(3):213–214. doi: 10.1093/protein/5.3.213. [DOI] [PubMed] [Google Scholar]
  25. Terras FRG., Schoofs HME., Thevissen K., Osborn R. W., Vanderleyden J., Cammue BPA., Broekaert W. F. Synergistic Enhancement of the Antifungal Activity of Wheat and Barley Thionins by Radish and Oilseed Rape 2S Albumins and by Barley Trypsin Inhibitors. Plant Physiol. 1993 Dec;103(4):1311–1319. doi: 10.1104/pp.103.4.1311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Worobo R. W., Henkel T., Sailer M., Roy K. L., Vederas J. C., Stiles M. E. Characteristics and genetic determinant of a hydrophobic peptide bacteriocin, carnobacteriocin A, produced by Carnobacterium piscicola LV17A. Microbiology. 1994 Mar;140(Pt 3):517–526. doi: 10.1099/00221287-140-3-517. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES