Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1996 Dec;62(12):4450–4460. doi: 10.1128/aem.62.12.4450-4460.1996

Functional analysis of the gene encoding immunity to lactacin F, lafI, and its use as a Lactobacillus-specific, food-grade genetic marker.

G E Allison 1, T R Klaenhammer 1
PMCID: PMC168271  PMID: 8953716

Abstract

Lactacin F is a two-component class II bacteriocin produced by Lactobacillus johnsonii VPI 11088. The laf operon is composed of the bacteriocin structural genes, lafA and lafX, and a third open reading frame, ORFZ. Two strategies were employed to study the function of ORFZ. This gene was disrupted in the chromosome of NCK64, a lafA729 lafX ORFZ derivative of VPI 11088. A disruption cassette consisting of ORFZ interrupted with a cat gene was cloned into pSA3 and introduced into NCK64. Manipulation of growth temperatures and antibiotic selection resulted in homologous recombination which disrupted the chromosomal copy of ORFZ with the cat gene. This ORFZ mutation resulted in loss of immunity to lactacin F but had little effect on production of LafX, which is not bactericidal without LafA. Expression of ORFZ in this ORFZ- background rescued the immune phenotype. Expression of ORFZ in a bacteriocin-sensitive derivative of VPI 11088 also reestablished immunity. These data indicate that ORFZ, renamed lafI, encodes the immunity factor for the lactacin F system. The sensitivity of various Lactobacillus strains to lactacin F was further evaluated. Lactacin F inhibited 11 strains including several members of the A1, A2, A3, A4, B1, and B2 L. acidophilus homology groups. Expression of lafI in bacteriocin-sensitive strains L. acidophilus ATCC 4356, L. acidophilus NCFM/N2, L. fermentum NCDO1750, L. gasseri ATCC 33323, and L. johnsonii ATCC 33200 provided immunity to lactacin F. Furthermore, it was shown that lactacin F production by VPI 11088 could be used to select for L. fermentum NCDO1750 transformants containing the recombinant plasmid encoding LafI. The data demonstrate that lafI is functional in heterologous hosts, suggesting that it may be a suitable food-grade genetic marker for use in lactobacillus species.

Full Text

The Full Text of this article is available as a PDF (418.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abee T., Klaenhammer T. R., Letellier L. Kinetic studies of the action of lactacin F, a bacteriocin produced by Lactobacillus johnsonii that forms poration complexes in the cytoplasmic membrane. Appl Environ Microbiol. 1994 Mar;60(3):1006–1013. doi: 10.1128/aem.60.3.1006-1013.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Abee T. Pore-forming bacteriocins of gram-positive bacteria and self-protection mechanisms of producer organisms. FEMS Microbiol Lett. 1995 Jun 1;129(1):1–10. doi: 10.1016/0378-1097(95)00137-T. [DOI] [PubMed] [Google Scholar]
  3. Allison G. E., Ahn C., Stiles M. E., Klaenhammer T. R. Utilization of the leucocin A export system in Leuconostoc gelidum for production of a Lactobacillus bacteriocin. FEMS Microbiol Lett. 1995 Aug 15;131(1):87–93. doi: 10.1016/0378-1097(95)00241-v. [DOI] [PubMed] [Google Scholar]
  4. Allison G. E., Fremaux C., Klaenhammer T. R. Expansion of bacteriocin activity and host range upon complementation of two peptides encoded within the lactacin F operon. J Bacteriol. 1994 Apr;176(8):2235–2241. doi: 10.1128/jb.176.8.2235-2241.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Axelsson L., Holck A. The genes involved in production of and immunity to sakacin A, a bacteriocin from Lactobacillus sake Lb706. J Bacteriol. 1995 Apr;177(8):2125–2137. doi: 10.1128/jb.177.8.2125-2137.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Aymerich T., Holo H., Håvarstein L. S., Hugas M., Garriga M., Nes I. F. Biochemical and genetic characterization of enterocin A from Enterococcus faecium, a new antilisterial bacteriocin in the pediocin family of bacteriocins. Appl Environ Microbiol. 1996 May;62(5):1676–1682. doi: 10.1128/aem.62.5.1676-1682.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Barefoot S. F., Klaenhammer T. R. Detection and activity of lactacin B, a bacteriocin produced by Lactobacillus acidophilus. Appl Environ Microbiol. 1983 Jun;45(6):1808–1815. doi: 10.1128/aem.45.6.1808-1815.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bhowmik T., Fernández L., Steele J. L. Gene replacement in Lactobacillus helveticus. J Bacteriol. 1993 Oct;175(19):6341–6344. doi: 10.1128/jb.175.19.6341-6344.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Biswas I., Gruss A., Ehrlich S. D., Maguin E. High-efficiency gene inactivation and replacement system for gram-positive bacteria. J Bacteriol. 1993 Jun;175(11):3628–3635. doi: 10.1128/jb.175.11.3628-3635.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Bojovic B., Djordjevic G., Topisirovic L. Improved vector for promoter screening in lactococci. Appl Environ Microbiol. 1991 Feb;57(2):385–388. doi: 10.1128/aem.57.2.385-388.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Bruno M. E., Montville T. J. Common mechanistic action of bacteriocins from lactic Acid bacteria. Appl Environ Microbiol. 1993 Sep;59(9):3003–3010. doi: 10.1128/aem.59.9.3003-3010.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Dao M. L., Ferretti J. J. Streptococcus-Escherichia coli shuttle vector pSA3 and its use in the cloning of streptococcal genes. Appl Environ Microbiol. 1985 Jan;49(1):115–119. doi: 10.1128/aem.49.1.115-119.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Delves-Broughton J., Blackburn P., Evans R. J., Hugenholtz J. Applications of the bacteriocin, nisin. Antonie Van Leeuwenhoek. 1996 Feb;69(2):193–202. doi: 10.1007/BF00399424. [DOI] [PubMed] [Google Scholar]
  14. Diep D. B., Håvarstein L. S., Nes I. F. A bacteriocin-like peptide induces bacteriocin synthesis in Lactobacillus plantarum C11. Mol Microbiol. 1995 Nov;18(4):631–639. doi: 10.1111/j.1365-2958.1995.mmi_18040631.x. [DOI] [PubMed] [Google Scholar]
  15. Diep D. B., Håvarstein L. S., Nissen-Meyer J., Nes I. F. The gene encoding plantaricin A, a bacteriocin from Lactobacillus plantarum C11, is located on the same transcription unit as an agr-like regulatory system. Appl Environ Microbiol. 1994 Jan;60(1):160–166. doi: 10.1128/aem.60.1.160-166.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Djordjevic G. M., Klaenhammer T. R. Positive selection, cloning vectors for gram-positive bacteria based on a restriction endonuclease cassette. Plasmid. 1996 Jan;35(1):37–45. doi: 10.1006/plas.1996.0004. [DOI] [PubMed] [Google Scholar]
  17. Dower W. J., Miller J. F., Ragsdale C. W. High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res. 1988 Jul 11;16(13):6127–6145. doi: 10.1093/nar/16.13.6127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Eisenberg D., Schwarz E., Komaromy M., Wall R. Analysis of membrane and surface protein sequences with the hydrophobic moment plot. J Mol Biol. 1984 Oct 15;179(1):125–142. doi: 10.1016/0022-2836(84)90309-7. [DOI] [PubMed] [Google Scholar]
  19. Fitzsimons A., Hols P., Jore J., Leer R. J., O'Connell M., Delcour J. Development of an amylolytic Lactobacillus plantarum silage strain expressing the Lactobacillus amylovorus alpha-amylase gene. Appl Environ Microbiol. 1994 Oct;60(10):3529–3535. doi: 10.1128/aem.60.10.3529-3535.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Fremaux C., Ahn C., Klaenhammer T. R. Molecular analysis of the lactacin F operon. Appl Environ Microbiol. 1993 Nov;59(11):3906–3915. doi: 10.1128/aem.59.11.3906-3915.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Fremaux C., Héchard Y., Cenatiempo Y. Mesentericin Y105 gene clusters in Leuconostoc mesenteroides Y105. Microbiology. 1995 Jul;141(Pt 7):1637–1645. doi: 10.1099/13500872-141-7-1637. [DOI] [PubMed] [Google Scholar]
  22. Holo H., Nes I. F. High-Frequency Transformation, by Electroporation, of Lactococcus lactis subsp. cremoris Grown with Glycine in Osmotically Stabilized Media. Appl Environ Microbiol. 1989 Dec;55(12):3119–3123. doi: 10.1128/aem.55.12.3119-3123.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Joerger M. C., Klaenhammer T. R. Characterization and purification of helveticin J and evidence for a chromosomally determined bacteriocin produced by Lactobacillus helveticus 481. J Bacteriol. 1986 Aug;167(2):439–446. doi: 10.1128/jb.167.2.439-446.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Joosten H., Nunez M. Prevention of histamine formation in cheese by bacteriocin-producing lactic Acid bacteria. Appl Environ Microbiol. 1996 Apr;62(4):1178–1181. doi: 10.1128/aem.62.4.1178-1181.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Kanatani K., Oshimura M., Sano K. Isolation and characterization of acidocin A and cloning of the bacteriocin gene from Lactobacillus acidophilus. Appl Environ Microbiol. 1995 Mar;61(3):1061–1067. doi: 10.1128/aem.61.3.1061-1067.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Klaenhammer T. R. Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol Rev. 1993 Sep;12(1-3):39–85. doi: 10.1111/j.1574-6976.1993.tb00012.x. [DOI] [PubMed] [Google Scholar]
  27. Kok J., van der Vossen J. M., Venema G. Construction of plasmid cloning vectors for lactic streptococci which also replicate in Bacillus subtilis and Escherichia coli. Appl Environ Microbiol. 1984 Oct;48(4):726–731. doi: 10.1128/aem.48.4.726-731.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Le Bourgeois P., Lautier M., Mata M., Ritzenthaler P. New tools for the physical and genetic mapping of Lactococcus strains. Gene. 1992 Feb 1;111(1):109–114. doi: 10.1016/0378-1119(92)90610-2. [DOI] [PubMed] [Google Scholar]
  29. Leer R. J., van der Vossen J. M., van Giezen M., van Noort J. M., Pouwels P. H. Genetic analysis of acidocin B, a novel bacteriocin produced by Lactobacillus acidophilus. Microbiology. 1995 Jul;141(Pt 7):1629–1635. doi: 10.1099/13500872-141-7-1629. [DOI] [PubMed] [Google Scholar]
  30. Moll G., Ubbink-Kok T., Hildeng-Hauge H., Nissen-Meyer J., Nes I. F., Konings W. N., Driessen A. J. Lactococcin G is a potassium ion-conducting, two-component bacteriocin. J Bacteriol. 1996 Feb;178(3):600–605. doi: 10.1128/jb.178.3.600-605.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Muriana P. M., Klaenhammer T. R. Conjugal Transfer of Plasmid-Encoded Determinants for Bacteriocin Production and Immunity in Lactobacillus acidophilus 88. Appl Environ Microbiol. 1987 Mar;53(3):553–560. doi: 10.1128/aem.53.3.553-560.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Nes I. F., Havarstein L. S., Holo H. Genetics of non-lantibiotic bacteriocins. Dev Biol Stand. 1995;85:645–651. [PubMed] [Google Scholar]
  33. Nissen-Meyer J., Holo H., Håvarstein L. S., Sletten K., Nes I. F. A novel lactococcal bacteriocin whose activity depends on the complementary action of two peptides. J Bacteriol. 1992 Sep;174(17):5686–5692. doi: 10.1128/jb.174.17.5686-5692.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Nissen-Meyer J., Håvarstein L. S., Holo H., Sletten K., Nes I. F. Association of the lactococcin A immunity factor with the cell membrane: purification and characterization of the immunity factor. J Gen Microbiol. 1993 Jul;139(7):1503–1509. doi: 10.1099/00221287-139-7-1503. [DOI] [PubMed] [Google Scholar]
  35. Nissen-Meyer J., Larsen A. G., Sletten K., Daeschel M., Nes I. F. Purification and characterization of plantaricin A, a Lactobacillus plantarum bacteriocin whose activity depends on the action of two peptides. J Gen Microbiol. 1993 Sep;139(9):1973–1978. doi: 10.1099/00221287-139-9-1973. [DOI] [PubMed] [Google Scholar]
  36. Posno M., Heuvelmans P. T., van Giezen M. J., Lokman B. C., Leer R. J., Pouwels P. H. Complementation of the inability of Lactobacillus strains to utilize D-xylose with D-xylose catabolism-encoding genes of Lactobacillus pentosus. Appl Environ Microbiol. 1991 Sep;57(9):2764–2766. doi: 10.1128/aem.57.9.2764-2766.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Pouwels P. H., Leer R. J. Genetics of lactobacilli: plasmids and gene expression. Antonie Van Leeuwenhoek. 1993;64(2):85–107. doi: 10.1007/BF00873020. [DOI] [PubMed] [Google Scholar]
  38. Quadri L. E., Sailer M., Roy K. L., Vederas J. C., Stiles M. E. Chemical and genetic characterization of bacteriocins produced by Carnobacterium piscicola LV17B. J Biol Chem. 1994 Apr 22;269(16):12204–12211. [PubMed] [Google Scholar]
  39. Quadri L. E., Sailer M., Terebiznik M. R., Roy K. L., Vederas J. C., Stiles M. E. Characterization of the protein conferring immunity to the antimicrobial peptide carnobacteriocin B2 and expression of carnobacteriocins B2 and BM1. J Bacteriol. 1995 Mar;177(5):1144–1151. doi: 10.1128/jb.177.5.1144-1151.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Raya R. R., Fremaux C., De Antoni G. L., Klaenhammer T. R. Site-specific integration of the temperate bacteriophage phi adh into the Lactobacillus gasseri chromosome and molecular characterization of the phage (attP) and bacterial (attB) attachment sites. J Bacteriol. 1992 Sep;174(17):5584–5592. doi: 10.1128/jb.174.17.5584-5592.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Ryan M. P., Rea M. C., Hill C., Ross R. P. An application in cheddar cheese manufacture for a strain of Lactococcus lactis producing a novel broad-spectrum bacteriocin, lacticin 3147. Appl Environ Microbiol. 1996 Feb;62(2):612–619. doi: 10.1128/aem.62.2.612-619.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Saris P. E., Immonen T., Reis M., Sahl H. G. Immunity to lantibiotics. Antonie Van Leeuwenhoek. 1996 Feb;69(2):151–159. doi: 10.1007/BF00399420. [DOI] [PubMed] [Google Scholar]
  43. Venema K., Abee T., Haandrikman A. J., Leenhouts K. J., Kok J., Konings W. N., Venema G. Mode of Action of Lactococcin B, a Thiol-Activated Bacteriocin from Lactococcus lactis. Appl Environ Microbiol. 1993 Apr;59(4):1041–1048. doi: 10.1128/aem.59.4.1041-1048.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Venema K., Haverkort R. E., Abee T., Haandrikman A. J., Leenhouts K. J., de Leij L., Venema G., Kok J. Mode of action of LciA, the lactococcin A immunity protein. Mol Microbiol. 1994 Nov;14(3):521–532. doi: 10.1111/j.1365-2958.1994.tb02186.x. [DOI] [PubMed] [Google Scholar]
  45. Venema K., Kok J., Marugg J. D., Toonen M. Y., Ledeboer A. M., Venema G., Chikindas M. L. Functional analysis of the pediocin operon of Pediococcus acidilactici PAC1.0: PedB is the immunity protein and PedD is the precursor processing enzyme. Mol Microbiol. 1995 Aug;17(3):515–522. doi: 10.1111/j.1365-2958.1995.mmi_17030515.x. [DOI] [PubMed] [Google Scholar]
  46. Walker D. C., Aoyama K., Klaenhammer T. R. Electrotransformation of lactobacillus acidophilus group A1. FEMS Microbiol Lett. 1996 May 1;138(2-3):233–237. doi: 10.1111/j.1574-6968.1996.tb08163.x. [DOI] [PubMed] [Google Scholar]
  47. Walker D. C., Klaenhammer T. R. Isolation of a novel IS3 group insertion element and construction of an integration vector for Lactobacillus spp. J Bacteriol. 1994 Sep;176(17):5330–5340. doi: 10.1128/jb.176.17.5330-5340.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Wanker E., Leer R. J., Pouwels P. H., Schwab H. Expression of Bacillus subtilis levanase gene in Lactobacillus plantarum and Lactobacillus casei. Appl Microbiol Biotechnol. 1995 May-Jun;43(2):297–303. doi: 10.1007/BF00172828. [DOI] [PubMed] [Google Scholar]
  49. Worobo R. W., Van Belkum M. J., Sailer M., Roy K. L., Vederas J. C., Stiles M. E. A signal peptide secretion-dependent bacteriocin from Carnobacterium divergens. J Bacteriol. 1995 Jun;177(11):3143–3149. doi: 10.1128/jb.177.11.3143-3149.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. van Belkum M. J., Hayema B. J., Jeeninga R. E., Kok J., Venema G. Organization and nucleotide sequences of two lactococcal bacteriocin operons. Appl Environ Microbiol. 1991 Feb;57(2):492–498. doi: 10.1128/aem.57.2.492-498.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. van Belkum M. J., Kok J., Venema G. Cloning, sequencing, and expression in Escherichia coli of lcnB, a third bacteriocin determinant from the lactococcal bacteriocin plasmid p9B4-6. Appl Environ Microbiol. 1992 Feb;58(2):572–577. doi: 10.1128/aem.58.2.572-577.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. van Belkum M. J., Kok J., Venema G., Holo H., Nes I. F., Konings W. N., Abee T. The bacteriocin lactococcin A specifically increases permeability of lactococcal cytoplasmic membranes in a voltage-independent, protein-mediated manner. J Bacteriol. 1991 Dec;173(24):7934–7941. doi: 10.1128/jb.173.24.7934-7941.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. van Belkum M. J., Stiles M. E. Molecular characterization of genes involved in the production of the bacteriocin leucocin A from Leuconostoc gelidum. Appl Environ Microbiol. 1995 Oct;61(10):3573–3579. doi: 10.1128/aem.61.10.3573-3579.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. van der Vossen J. M., van der Lelie D., Venema G. Isolation and characterization of Streptococcus cremoris Wg2-specific promoters. Appl Environ Microbiol. 1987 Oct;53(10):2452–2457. doi: 10.1128/aem.53.10.2452-2457.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. von Wright A., Wessels S., Tynkkynen S., Saarela M. Isolation of a replication region of a large lactococcal plasmid and use in cloning of a nisin resistance determinant. Appl Environ Microbiol. 1990 Jul;56(7):2029–2035. doi: 10.1128/aem.56.7.2029-2035.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES