Skip to main content
American Journal of Human Genetics logoLink to American Journal of Human Genetics
. 1991 Jan;48(1):1–15.

Mapping of human chromosome Xq28 by two-color fluorescence in situ hybridization of DNA sequences to interphase cell nuclei.

B J Trask 1, H Massa 1, S Kenwrick 1, J Gitschier 1
PMCID: PMC1682740  PMID: 1985451

Abstract

We have used the proximity of probe hybridization sites in interphase chromatin to derive the order of DNA sequences in a 2-3-Mbp region of human chromosome Xq28. The map generated bridges the results of genetic and pulsed-field gel electrophoresis mapping to produce a more complete map of Xq28 than possible with either of these other techniques alone. Two-color fluorescence in situ hybridization (FISH) was used to detect the positions of two or more probes in G1 male interphase nuclei. We show that cosmids that are 50 kbp to 2-3 Mbp apart can be ordered rapidly with two alternative approaches: (1) by comparing the average measured distance between two probes and (2) simply by scoring the order of red and green fluorescent dots after detection of three or more probes with two fluorochromes. The validity of these approaches is demonstrated using five cosmids from a region spanning approximately 800 kbp that includes the factor VIII (F8), glucose-6-phosphate dehydrogenase (G6PD), and color-vision pigment (CV) genes. The cosmid map derived from interphase mapping is consistent with the map determined by restriction-fragment analysis. The two interphase mapping approaches were then used (1) to orient the F8/CV cluster relative to two markers, c1A1 and st14c, which we show by metaphase mapping to be proximal to the F8/CV cluster, (2) to position st14c (DXS52) between c1A1 and F8, and (3) to orient the CV gene cluster relative to G6PD by using two CV-flanking cosmids, 18b41 and fr7. The probe order in Xq28 derived from interphase proximity is cen-c1A1-st14c-5'F8 (p624-p542-p625)-G6PD-18b41-3' green-green-red-fr7-tel. We also show that, to determine their order by using metaphase chromosomes, sequences must be at least 1 Mbp apart, an order of magnitude greater than required in interphase chromatin. The data show that FISH mapping is a simple way to order sequences separated by greater than or equal to 50 kbp for the construction of long-range maps of mammalian genomes.

Full text

PDF
1

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arveiler B., Vincent A., Mandel J. L. Toward a physical map of the Xq28 region in man: linking color vision, G6PD, and coagulation factor VIII genes to an X-Y homology region. Genomics. 1989 May;4(4):460–471. doi: 10.1016/0888-7543(89)90269-3. [DOI] [PubMed] [Google Scholar]
  2. Aubourg P. R., Sack G. H., Jr, Meyers D. A., Lease J. J., Moser H. W. Linkage of adrenoleukodystrophy to a polymorphic DNA probe. Ann Neurol. 1987 Apr;21(4):349–352. doi: 10.1002/ana.410210406. [DOI] [PubMed] [Google Scholar]
  3. Aubourg P., Feil R., Guidoux S., Kaplan J. C., Moser H., Kahn A., Mandel J. L. The red-green visual pigment gene region in adrenoleukodystrophy. Am J Hum Genet. 1990 Mar;46(3):459–469. [PMC free article] [PubMed] [Google Scholar]
  4. Baron M., Risch N., Hamburger R., Mandel B., Kushner S., Newman M., Drumer D., Belmaker R. H. Genetic linkage between X-chromosome markers and bipolar affective illness. Nature. 1987 Mar 19;326(6110):289–292. doi: 10.1038/326289a0. [DOI] [PubMed] [Google Scholar]
  5. Bućan M., Zimmer M., Whaley W. L., Poustka A., Youngman S., Allitto B. A., Ormondroyd E., Smith B., Pohl T. M., MacDonald M. Physical maps of 4p16.3, the area expected to contain the Huntington disease mutation. Genomics. 1990 Jan;6(1):1–15. doi: 10.1016/0888-7543(90)90442-w. [DOI] [PubMed] [Google Scholar]
  6. Carroll M. C., Katzman P., Alicot E. M., Koller B. H., Geraghty D. E., Orr H. T., Strominger J. L., Spies T. Linkage map of the human major histocompatibility complex including the tumor necrosis factor genes. Proc Natl Acad Sci U S A. 1987 Dec;84(23):8535–8539. doi: 10.1073/pnas.84.23.8535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Connor J. M., Gatherer D., Gray F. C., Pirrit L. A., Affara N. A. Assignment of the gene for dyskeratosis congenita to Xq28. Hum Genet. 1986 Apr;72(4):348–351. doi: 10.1007/BF00290963. [DOI] [PubMed] [Google Scholar]
  8. Drummond-Borg M., Deeb S. S., Motulsky A. G. Molecular patterns of X chromosome-linked color vision genes among 134 men of European ancestry. Proc Natl Acad Sci U S A. 1989 Feb;86(3):983–987. doi: 10.1073/pnas.86.3.983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Feil R., Aubourg P., Heilig R., Mandel J. L. A 195-kb cosmid walk encompassing the human Xq28 color vision pigment genes. Genomics. 1990 Feb;6(2):367–373. doi: 10.1016/0888-7543(90)90578-i. [DOI] [PubMed] [Google Scholar]
  10. Feil R., Palmieri G., d'Urso M., Heilig R., Oberlé I., Mandel J. L. Physical and genetic mapping of polymorphic loci in Xq28 (DXS15, DXS52, and DXS134): analysis of a cosmid clone and a yeast artificial chromosome. Am J Hum Genet. 1990 Apr;46(4):720–728. [PMC free article] [PubMed] [Google Scholar]
  11. Harper M. E., Ullrich A., Saunders G. F. Localization of the human insulin gene to the distal end of the short arm of chromosome 11. Proc Natl Acad Sci U S A. 1981 Jul;78(7):4458–4460. doi: 10.1073/pnas.78.7.4458. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kenwrick S., Gitschier J. A contiguous, 3-Mb physical map of Xq28 extending from the colorblindness locus to DXS15. Am J Hum Genet. 1989 Dec;45(6):873–882. [PMC free article] [PubMed] [Google Scholar]
  13. Kenwrick S., Ionasescu V., Ionasescu G., Searby C., King A., Dubowitz M., Davies K. E. Linkage studies of X-linked recessive spastic paraplegia using DNA probes. Hum Genet. 1986 Jul;73(3):264–266. doi: 10.1007/BF00401241. [DOI] [PubMed] [Google Scholar]
  14. Knoers N., van der Heyden H., van Oost B. A., Ropers H. H., Monnens L., Willems J. Nephrogenic diabetes insipidus: close linkage with markers from the distal long arm of the human X chromosome. Hum Genet. 1988 Sep;80(1):31–38. doi: 10.1007/BF00451451. [DOI] [PubMed] [Google Scholar]
  15. Lawrence J. B., Singer R. H., McNeil J. A. Interphase and metaphase resolution of different distances within the human dystrophin gene. Science. 1990 Aug 24;249(4971):928–932. doi: 10.1126/science.2203143. [DOI] [PubMed] [Google Scholar]
  16. Lawrence J. B., Villnave C. A., Singer R. H. Sensitive, high-resolution chromatin and chromosome mapping in situ: presence and orientation of two closely integrated copies of EBV in a lymphoma line. Cell. 1988 Jan 15;52(1):51–61. doi: 10.1016/0092-8674(88)90530-2. [DOI] [PubMed] [Google Scholar]
  17. Levinson B., Kenwrick S., Lakich D., Hammonds G., Jr, Gitschier J. A transcribed gene in an intron of the human factor VIII gene. Genomics. 1990 May;7(1):1–11. doi: 10.1016/0888-7543(90)90512-s. [DOI] [PubMed] [Google Scholar]
  18. Lichter P., Tang C. J., Call K., Hermanson G., Evans G. A., Housman D., Ward D. C. High-resolution mapping of human chromosome 11 by in situ hybridization with cosmid clones. Science. 1990 Jan 5;247(4938):64–69. doi: 10.1126/science.2294592. [DOI] [PubMed] [Google Scholar]
  19. Lüdecke H. J., Senger G., Claussen U., Horsthemke B. Construction and characterization of band-specific DNA libraries. Hum Genet. 1990 May;84(6):512–516. doi: 10.1007/BF00210800. [DOI] [PubMed] [Google Scholar]
  20. Mandel J. L., Willard H. F., Nussbaum R. L., Romeo G., Puck J. M., Davies K. E. Report of the committee on the genetic constitution of the X chromosome. Cytogenet Cell Genet. 1989;51(1-4):384–437. doi: 10.1159/000132801. [DOI] [PubMed] [Google Scholar]
  21. Moyzis R. K., Buckingham J. M., Cram L. S., Dani M., Deaven L. L., Jones M. D., Meyne J., Ratliff R. L., Wu J. R. A highly conserved repetitive DNA sequence, (TTAGGG)n, present at the telomeres of human chromosomes. Proc Natl Acad Sci U S A. 1988 Sep;85(18):6622–6626. doi: 10.1073/pnas.85.18.6622. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Nathans J., Thomas D., Hogness D. S. Molecular genetics of human color vision: the genes encoding blue, green, and red pigments. Science. 1986 Apr 11;232(4747):193–202. doi: 10.1126/science.2937147. [DOI] [PubMed] [Google Scholar]
  23. Nelson W. G., Pienta K. J., Barrack E. R., Coffey D. S. The role of the nuclear matrix in the organization and function of DNA. Annu Rev Biophys Biophys Chem. 1986;15:457–475. doi: 10.1146/annurev.bb.15.060186.002325. [DOI] [PubMed] [Google Scholar]
  24. Oberlé I., Drayna D., Camerino G., White R., Mandel J. L. The telomeric region of the human X chromosome long arm: presence of a highly polymorphic DNA marker and analysis of recombination frequency. Proc Natl Acad Sci U S A. 1985 May;82(9):2824–2828. doi: 10.1073/pnas.82.9.2824. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Patterson M. N., Bell M. V., Bloomfield J., Flint T., Dorkins H., Thibodeau S. N., Schaid D., Bren G., Schwartz C. E., Wieringa B. Genetic and physical mapping of a novel region close to the fragile X site on the human X chromosome. Genomics. 1989 May;4(4):570–578. doi: 10.1016/0888-7543(89)90281-4. [DOI] [PubMed] [Google Scholar]
  26. Patterson M., Bell M., Schwartz C., Davies K. Pulsed-field gel mapping studies in the vicinity of the fragile site at Xq27.3. Am J Med Genet. 1988 May-Jun;30(1-2):581–591. doi: 10.1002/ajmg.1320300159. [DOI] [PubMed] [Google Scholar]
  27. Patterson M., Gitschier J., Bloomfield J., Bell M., Dorkins H., Froster-Iskenius U., Sommer S., Sobell J., Schaid D., Thibodeau S. An intronic region within the human factor VIII gene is duplicated within Xq28 and is homologous to the polymorphic locus DXS115 (767). Am J Hum Genet. 1989 May;44(5):679–685. [PMC free article] [PubMed] [Google Scholar]
  28. Patterson M., Schwartz C., Bell M., Sauer S., Hofker M., Trask B., van den Engh G., Davies K. E. Physical mapping studies on the human X chromosome in the region Xq27-Xqter. Genomics. 1987 Dec;1(4):297–306. doi: 10.1016/0888-7543(87)90028-0. [DOI] [PubMed] [Google Scholar]
  29. Persico M. G., Viglietto G., Martini G., Toniolo D., Paonessa G., Moscatelli C., Dono R., Vulliamy T., Luzzatto L., D'Urso M. Isolation of human glucose-6-phosphate dehydrogenase (G6PD) cDNA clones: primary structure of the protein and unusual 5' non-coding region. Nucleic Acids Res. 1986 Mar 25;14(6):2511–2522. doi: 10.1093/nar/14.6.2511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Pinkel D., Straume T., Gray J. W. Cytogenetic analysis using quantitative, high-sensitivity, fluorescence hybridization. Proc Natl Acad Sci U S A. 1986 May;83(9):2934–2938. doi: 10.1073/pnas.83.9.2934. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Trask B., Pinkel D., van den Engh G. The proximity of DNA sequences in interphase cell nuclei is correlated to genomic distance and permits ordering of cosmids spanning 250 kilobase pairs. Genomics. 1989 Nov;5(4):710–717. doi: 10.1016/0888-7543(89)90112-2. [DOI] [PubMed] [Google Scholar]
  32. Wada M., Little R. D., Abidi F., Porta G., Labella T., Cooper T., Della Valle G., D'Urso M., Schlessinger D. Human Xq24-Xq28: approaches to mapping with yeast artificial chromosomes. Am J Hum Genet. 1990 Jan;46(1):95–106. [PMC free article] [PubMed] [Google Scholar]
  33. Warren S. T., Zhang F., Licameli G. R., Peters J. F. The fragile X site in somatic cell hybrids: an approach for molecular cloning of fragile sites. Science. 1987 Jul 24;237(4813):420–423. doi: 10.1126/science.3603029. [DOI] [PubMed] [Google Scholar]

Articles from American Journal of Human Genetics are provided here courtesy of American Society of Human Genetics

RESOURCES