Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1996 Dec;62(12):4536–4541. doi: 10.1128/aem.62.12.4536-4541.1996

Mode of action of a lysostaphin-like bacteriolytic agent produced by Streptococcus zooepidemicus 4881.

R S Simmonds 1, L Pearson 1, R C Kennedy 1, J R Tagg 1
PMCID: PMC168280  PMID: 8953725

Abstract

Electron microscopy of zoocin A-treated sensitive streptococcus cells revealed cytoplasmic disruption and ultimately complete rupture of the cell wall. Culture viability and optical density were shown to decrease rapidly and simultaneously in Streptococcus pyogenes FF22 but less quickly in the relatively more resistant Streptococcus mutans 10449. Zoocin A was shown to cleave hexaglycine in a colorimetric cell-free microtiter assay system, and it is concluded that the killing action of zoocin A, like that of lysostaphin, is most probably the result of direct cleavage of the peptidoglycan cross-links in the cell wall. The relationship between sensitivity to zoocin A and the peptidoglycan cross-linkage structure of Streptococcus zooepidemicus, Lactococcus spp., S. pyogenes, Streptococcus gordonii, Streptococcus oralis, S. mutans, and Streptococcus rattus has been evaluated.

Full Text

The Full Text of this article is available as a PDF (436.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BROWDER H. P., ZYGMUNT W. A., YOUNG J. R., TAVORMINA P. A. LYSOSTAPHIN: ENZYMATIC MODE OF ACTION. Biochem Biophys Res Commun. 1965 Apr 23;19:383–389. doi: 10.1016/0006-291x(65)90473-0. [DOI] [PubMed] [Google Scholar]
  2. Barnham M., Cole G., Efstratiou A., Tagg J. R., Skjold S. A. Characterization of Streptococcus zooepidemicus (Lancefield group C) from human and selected animal infections. Epidemiol Infect. 1987 Apr;98(2):171–182. doi: 10.1017/s0950268800061884. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Dajani A. S., Law D. J., Bollinger R. O., Ecklund P. S. Ultrastructural and biochemical alterations effected by viridin B, a bacterocin of alpha-hemolytic streptococci. Infect Immun. 1976 Sep;14(3):776–782. doi: 10.1128/iai.14.3.776-782.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. DeHart H. P., Heath H. E., Heath L. S., LeBlanc P. A., Sloan G. L. The lysostaphin endopeptidase resistance gene (epr) specifies modification of peptidoglycan cross bridges in Staphylococcus simulans and Staphylococcus aureus. Appl Environ Microbiol. 1995 Apr;61(4):1475–1479. doi: 10.1128/aem.61.4.1475-1479.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Heath H. E., Heath L. S., Nitterauer J. D., Rose K. E., Sloan G. L. Plasmid-encoded lysostaphin endopeptidase resistance of Staphylococcus simulans biovar staphylolyticus. Biochem Biophys Res Commun. 1989 May 15;160(3):1106–1109. doi: 10.1016/s0006-291x(89)80117-2. [DOI] [PubMed] [Google Scholar]
  6. Higgins M. L., Pooley H. M., Shockman G. D. Site of initiation of cellular autolysis in Streptococcus faecalis as seen by electron microscopy. J Bacteriol. 1970 Aug;103(2):504–512. doi: 10.1128/jb.103.2.504-512.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Jack R. W., Tagg J. R., Ray B. Bacteriocins of gram-positive bacteria. Microbiol Rev. 1995 Jun;59(2):171–200. doi: 10.1128/mr.59.2.171-200.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kline S. A., de la Harpe J., Blackburn P. A colorimetric microtiter plate assay for lysostaphin using a hexaglycine substrate. Anal Biochem. 1994 Mar;217(2):329–331. doi: 10.1006/abio.1994.1127. [DOI] [PubMed] [Google Scholar]
  9. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  10. Márová I., Kovár J. Spectrophotometric detection of bacteriolytic activity of diluted lysostaphin solutions. Folia Microbiol (Praha) 1993;38(2):153–158. doi: 10.1007/BF02891699. [DOI] [PubMed] [Google Scholar]
  11. Nomura M. Colicins and related bacteriocins. Annu Rev Microbiol. 1967;21:257–284. doi: 10.1146/annurev.mi.21.100167.001353. [DOI] [PubMed] [Google Scholar]
  12. Peterson G. L. A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem. 1977 Dec;83(2):346–356. doi: 10.1016/0003-2697(77)90043-4. [DOI] [PubMed] [Google Scholar]
  13. Pugsley A. P. The ins and outs of colicins. Part II. Lethal action, immunity and ecological implications. Microbiol Sci. 1984 Nov;1(8):203–205. [PubMed] [Google Scholar]
  14. Recsei P. A., Gruss A. D., Novick R. P. Cloning, sequence, and expression of the lysostaphin gene from Staphylococcus simulans. Proc Natl Acad Sci U S A. 1987 Mar;84(5):1127–1131. doi: 10.1073/pnas.84.5.1127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Robinson J. M., Hardman J. K., Sloan G. L. Relationship between lysostaphin endopeptidase production and cell wall composition in Staphylococcus staphylolyticus. J Bacteriol. 1979 Mar;137(3):1158–1164. doi: 10.1128/jb.137.3.1158-1164.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. SCHINDLER C. A., SCHUHARDT V. T. LYSOSTAPHIN: A NEW BACTERIOLYTIC AGENT FOR THE STAPHYLOCOCCUS. Proc Natl Acad Sci U S A. 1964 Mar;51:414–421. doi: 10.1073/pnas.51.3.414. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Sahl H. G., Hahn C., Brandis H. Interaction of the staphylococcin-like peptide Pep 5 with cell walls and isolated cell wall components of Gram-positive bacteria. Zentralbl Bakteriol Mikrobiol Hyg A. 1985 Oct;260(2):197–205. doi: 10.1016/s0176-6724(85)80115-2. [DOI] [PubMed] [Google Scholar]
  18. Schleifer K. H., Kandler O. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev. 1972 Dec;36(4):407–477. doi: 10.1128/br.36.4.407-477.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Schleifer K. H., Kilpper-Bälz R., Kraus J., Gehring F. Relatedness and classification of Streptococcus mutans and "mutans-like" streptococci. J Dent Res. 1984 Aug;63(8):1047–1050. doi: 10.1177/00220345840630080701. [DOI] [PubMed] [Google Scholar]
  20. Schofield C. R., Tagg J. R. Bacteriocin-like activity of group B and group C streptococci of human and of animal origin. J Hyg (Lond) 1983 Feb;90(1):7–18. doi: 10.1017/s0022172400063774. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Strominger J. L., Ghuysen J. M. Mechanisms of enzymatic bacteriaolysis. Cell walls of bacteri are solubilized by action of either specific carbohydrases or specific peptidases. Science. 1967 Apr 14;156(3772):213–221. doi: 10.1126/science.156.3772.213. [DOI] [PubMed] [Google Scholar]
  22. Tagg J. R., Bannister L. V. "Fingerprinting" beta-haemolytic streptococci by their production of and sensitivity to bacteriocine-like inhibitors. J Med Microbiol. 1979 Nov;12(4):397–411. doi: 10.1099/00222615-12-4-397. [DOI] [PubMed] [Google Scholar]
  23. Wang X., Wilkinson B. J., Jayaswal R. K. Sequence analysis of a Staphylococcus aureus gene encoding a peptidoglycan hydrolase activity. Gene. 1991 Jun 15;102(1):105–109. doi: 10.1016/0378-1119(91)90547-o. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES