Abstract
Isocitrate dehydrogenase from an extremely thermophilic bacterium, Thermus aquaticus YT1, was purified to homogeneity, and the gene was cloned by using a degenerate oligonucleotide probe based on the N-terminal sequence. The gene consisted of a single open reading frame of 1,278 bp preceded by a Shine-Dalgarno ribosome binding site, and a terminator-like sequence was detected downstream of the open reading frame. The G+C content of the coding region was 65%, and that of the third nucleotide of the codons was 93%. The amino acid sequence of the enzyme showed a relatively low level of similarity to the counterpart from T. thermophilus (35% identity) but showed higher levels of similarity (54 to 69% identity) to the other bacterial counterparts so far reported, including those from Escherichia coli, Bacillus subtilis, Vibrio sp., and Anabaena sp. The cloned gene was highly expressed in E. coli and easily purified to homogeneity by heat treatment (70 degrees C, 30 min) and DEAE column chromatography to yield approximately 10 mg of protein from 1 g of wet cells. The recombinant enzyme showed high thermostability and almost the same heat denaturation profile as the intact enzyme purified from the thermophile cells, implying that the recombinant protein has the same structure as the intact one.
Full Text
The Full Text of this article is available as a PDF (598.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Date T., Tanihara K., Numura N. Construction of Escherichia coli vectors for expression and mutagenesis: synthesis of human c-Myc protein that is initiated at a non-AUG codon in exon 1. Gene. 1990 May 31;90(1):141–144. doi: 10.1016/0378-1119(90)90450-6. [DOI] [PubMed] [Google Scholar]
- Dean A. M., Koshland D. E., Jr Kinetic mechanism of Escherichia coli isocitrate dehydrogenase. Biochemistry. 1993 Sep 14;32(36):9302–9309. doi: 10.1021/bi00087a007. [DOI] [PubMed] [Google Scholar]
- Eguchi H., Wakagi T., Oshima T. A highly stable NADP-dependent isocitrate dehydrogenase from Thermus thermophilus HB8: purification and general properties. Biochim Biophys Acta. 1989 Feb 24;990(2):133–137. doi: 10.1016/s0304-4165(89)80024-8. [DOI] [PubMed] [Google Scholar]
- Hurley J. H., Thorsness P. E., Ramalingam V., Helmers N. H., Koshland D. E., Jr, Stroud R. M. Structure of a bacterial enzyme regulated by phosphorylation, isocitrate dehydrogenase. Proc Natl Acad Sci U S A. 1989 Nov;86(22):8635–8639. doi: 10.1073/pnas.86.22.8635. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ishii A., Suzuki M., Sahara T., Takada Y., Sasaki S., Fukunaga N. Genes encoding two isocitrate dehydrogenase isozymes of a psychrophilic bacterium, Vibrio sp. strain ABE-1. J Bacteriol. 1993 Nov;175(21):6873–6880. doi: 10.1128/jb.175.21.6873-6880.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jin S., Sonenshein A. L. Identification of two distinct Bacillus subtilis citrate synthase genes. J Bacteriol. 1994 Aug;176(15):4669–4679. doi: 10.1128/jb.176.15.4669-4679.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kagawa Y., Nojima H., Nukiwa N., Ishizuka M., Nakajima T., Yasuhara T., Tanaka T., Oshima T. High guanine plus cytosine content in the third letter of codons of an extreme thermophile. DNA sequence of the isopropylmalate dehydrogenase of Thermus thermophilus. J Biol Chem. 1984 Mar 10;259(5):2956–2960. [PubMed] [Google Scholar]
- Kirino H., Oshima T. Molecular cloning and nucleotide sequence of 3-isopropylmalate dehydrogenase gene (leuB) from an extreme thermophile, Thermus aquaticus YT-1. J Biochem. 1991 Jun;109(6):852–857. doi: 10.1093/oxfordjournals.jbchem.a123470. [DOI] [PubMed] [Google Scholar]
- Kunkel T. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc Natl Acad Sci U S A. 1985 Jan;82(2):488–492. doi: 10.1073/pnas.82.2.488. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miyazaki K., Eguchi H., Yamagishi A., Wakagi T., Oshima T. Molecular cloning of the isocitrate dehydrogenase gene of an extreme thermophile, Thermus thermophilus HB8. Appl Environ Microbiol. 1992 Jan;58(1):93–98. doi: 10.1128/aem.58.1.93-98.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Muro-Pastor M. I., Florencio F. J. NADP(+)-isocitrate dehydrogenase from the cyanobacterium Anabaena sp. strain PCC 7120: purification and characterization of the enzyme and cloning, sequencing, and disruption of the icd gene. J Bacteriol. 1994 May;176(9):2718–2726. doi: 10.1128/jb.176.9.2718-2726.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ramaley R. F., Hudock M. O. Purification and properties of isocitrate dehydrogenase (NADP) from Thermus aquaticus YT-1, Bacillus subtilis-168 and Chlamydomonas reinhardti-Y-2. Biochim Biophys Acta. 1973 Jul 5;315(1):22–36. doi: 10.1016/0005-2744(73)90125-3. [DOI] [PubMed] [Google Scholar]
- SAITO H., MIURA K. I. PREPARATION OF TRANSFORMING DEOXYRIBONUCLEIC ACID BY PHENOL TREATMENT. Biochim Biophys Acta. 1963 Aug 20;72:619–629. [PubMed] [Google Scholar]
- Sanger F., Coulson A. R. A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J Mol Biol. 1975 May 25;94(3):441–448. doi: 10.1016/0022-2836(75)90213-2. [DOI] [PubMed] [Google Scholar]
- Thorsness P. E., Koshland D. E., Jr Inactivation of isocitrate dehydrogenase by phosphorylation is mediated by the negative charge of the phosphate. J Biol Chem. 1987 Aug 5;262(22):10422–10425. [PubMed] [Google Scholar]
