Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1996 Dec;62(12):4641–4647. doi: 10.1128/aem.62.12.4641-4647.1996

Structure and function of a nitrifying biofilm as determined by in situ hybridization and the use of microelectrodes.

A Schramm 1, L H Larsen 1, N P Revsbech 1, N B Ramsing 1, R Amann 1, K H Schleifer 1
PMCID: PMC168290  PMID: 8953735

Abstract

Microprofiles of O2 and NO3- were measured in nitrifying biofilms from the trickling filter of an aquaculture water recirculation system. By use of a newly developed biosensor for NO3-, it was possible to avoid conventional interference from other ions. Nitrification was restricted to a narrow zone of 50 microns on the very top of the film. In the same biofilms, the vertical distributions of members of the lithoautotrophic ammonia-oxidizing genus Nitrosomonas and of the nitrite-oxidizing genus Nitrobacter were investigated by applying fluorescence in situ hybridization of whole fixed cells with 16S rRNA-targeted oligonucleotide probes in combination with confocal laser-scanning microscopy. Ammonia oxidizers formed a dense layer of cell clusters in the upper part of the biofilm, whereas the nitrite oxidizers showed less-dense aggregates in close vicinity to the Nitrosomonas clusters. Both species were not restricted to the oxic zone of the biofilm but were also detected in substantially lower numbers in the anoxic layers and even occasionally at the bottom of the biofilm.

Full Text

The Full Text of this article is available as a PDF (361.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abeliovich A. Nitrifying bacteria in wastewater reservoirs. Appl Environ Microbiol. 1987 Apr;53(4):754–760. doi: 10.1128/aem.53.4.754-760.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Amann R. I., Krumholz L., Stahl D. A. Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. J Bacteriol. 1990 Feb;172(2):762–770. doi: 10.1128/jb.172.2.762-770.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Amann R. I., Ludwig W., Schleifer K. H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev. 1995 Mar;59(1):143–169. doi: 10.1128/mr.59.1.143-169.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Amann R. I., Stromley J., Devereux R., Key R., Stahl D. A. Molecular and microscopic identification of sulfate-reducing bacteria in multispecies biofilms. Appl Environ Microbiol. 1992 Feb;58(2):614–623. doi: 10.1128/aem.58.2.614-623.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Belser L. W. Population ecology of nitrifying bacteria. Annu Rev Microbiol. 1979;33:309–333. doi: 10.1146/annurev.mi.33.100179.001521. [DOI] [PubMed] [Google Scholar]
  6. Belser L. W., Schmidt E. L. Serological diversity within a terrestrial ammonia-oxidizing population. Appl Environ Microbiol. 1978 Oct;36(4):589–593. doi: 10.1128/aem.36.4.589-593.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ehrich S., Behrens D., Lebedeva E., Ludwig W., Bock E. A new obligately chemolithoautotrophic, nitrite-oxidizing bacterium, Nitrospira moscoviensis sp. nov. and its phylogenetic relationship. Arch Microbiol. 1995 Jul;164(1):16–23. doi: 10.1007/BF02568729. [DOI] [PubMed] [Google Scholar]
  8. Flärdh K., Cohen P. S., Kjelleberg S. Ribosomes exist in large excess over the apparent demand for protein synthesis during carbon starvation in marine Vibrio sp. strain CCUG 15956. J Bacteriol. 1992 Nov;174(21):6780–6788. doi: 10.1128/jb.174.21.6780-6788.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Jensen K., Revsbech N. P., Nielsen L. P. Microscale distribution of nitrification activity in sediment determined with a shielded microsensor for nitrate. Appl Environ Microbiol. 1993 Oct;59(10):3287–3296. doi: 10.1128/aem.59.10.3287-3296.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Jensen K., Sloth N. P., Risgaard-Petersen N., Rysgaard S., Revsbech N. P. Estimation of nitrification and denitrification from microprofiles of oxygen and nitrate in model sediment systems. Appl Environ Microbiol. 1994 Jun;60(6):2094–2100. doi: 10.1128/aem.60.6.2094-2100.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Koike I., Hattori A. Simultaneous determinations of nitrification and nitrate reduction in coastal sediments by a 15N dilution technique. Appl Environ Microbiol. 1978 May;35(5):853–857. doi: 10.1128/aem.35.5.853-857.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Larsen L. H., Revsbech N. P., Binnerup S. J. A microsensor for nitrate based on immobilized denitrifying bacteria. Appl Environ Microbiol. 1996 Apr;62(4):1248–1251. doi: 10.1128/aem.62.4.1248-1251.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Manz W., Szewzyk U., Ericsson P., Amann R., Schleifer K. H., Stenström T. A. In situ identification of bacteria in drinking water and adjoining biofilms by hybridization with 16S and 23S rRNA-directed fluorescent oligonucleotide probes. Appl Environ Microbiol. 1993 Jul;59(7):2293–2298. doi: 10.1128/aem.59.7.2293-2298.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Poth M. Dinitrogen production from nitrite by a nitrosomonas isolate. Appl Environ Microbiol. 1986 Oct;52(4):957–959. doi: 10.1128/aem.52.4.957-959.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Ramsing N. B., Kühl M., Jørgensen B. B. Distribution of sulfate-reducing bacteria, O2, and H2S in photosynthetic biofilms determined by oligonucleotide probes and microelectrodes. Appl Environ Microbiol. 1993 Nov;59(11):3840–3849. doi: 10.1128/aem.59.11.3840-3849.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Rysgaard S., Risgaard-Petersen N., Nielsen L. P., Revsbech N. P. Nitrification and denitrification in lake and estuarine sediments measured by the N dilution technique and isotope pairing. Appl Environ Microbiol. 1993 Jul;59(7):2093–2098. doi: 10.1128/aem.59.7.2093-2098.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Wagner M., Assmus B., Hartmann A., Hutzler P., Amann R. In situ analysis of microbial consortia in activated sludge using fluorescently labelled, rRNA-targeted oligonucleotide probes and confocal scanning laser microscopy. J Microsc. 1994 Dec;176(Pt 3):181–187. doi: 10.1111/j.1365-2818.1994.tb03513.x. [DOI] [PubMed] [Google Scholar]
  18. de Beer D., van den Heuvel J. C., Ottengraf S. P. Microelectrode measurements of the activity distribution in nitrifying bacterial aggregates. Appl Environ Microbiol. 1993 Feb;59(2):573–579. doi: 10.1128/aem.59.2.573-579.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES