Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1996 Dec;62(12):4648–4651. doi: 10.1128/aem.62.12.4648-4651.1996

Ethanolic fermentation of xylose with Saccharomyces cerevisiae harboring the Thermus thermophilus xylA gene, which expresses an active xylose (glucose) isomerase.

M Walfridsson 1, X Bao 1, M Anderlund 1, G Lilius 1, L Bülow 1, B Hahn-Hägerdal 1
PMCID: PMC168291  PMID: 8953736

Abstract

The Thermus thermophilus xylA gene encoding xylose (glucose) isomerase was cloned and expressed in Saccharomyces cerevisiae under the control of the yeast PGK1 promoter. The recombinant xylose isomerase showed the highest activity at 85 degrees C with a specific activity of 1.0 U mg-1. A new functional metabolic pathway in S. cerevisiae with ethanol formation during oxygen-limited xylose fermentation was demonstrated. Xylitol and acetic acid were also formed during the fermentation.

Full Text

The Full Text of this article is available as a PDF (233.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  2. Dekker K., Yamagata H., Sakaguchi K., Udaka S. Xylose (glucose) isomerase gene from the thermophile Thermus thermophilus: cloning, sequencing, and comparison with other thermostable xylose isomerases. J Bacteriol. 1991 May;173(10):3078–3083. doi: 10.1128/jb.173.10.3078-3083.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Jeffries T. W. Utilization of xylose by bacteria, yeasts, and fungi. Adv Biochem Eng Biotechnol. 1983;27:1–32. doi: 10.1007/BFb0009101. [DOI] [PubMed] [Google Scholar]
  4. Jeppsson H., Yu S., Hahn-Hägerdal B. Xylulose and glucose fermentation by Saccharomyces cerevisiae in chemostat culture. Appl Environ Microbiol. 1996 May;62(5):1705–1709. doi: 10.1128/aem.62.5.1705-1709.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Kuhn A., van Zyl C., van Tonder A., Prior B. A. Purification and partial characterization of an aldo-keto reductase from Saccharomyces cerevisiae. Appl Environ Microbiol. 1995 Apr;61(4):1580–1585. doi: 10.1128/aem.61.4.1580-1585.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  7. Mellor J., Dobson M. J., Roberts N. A., Tuite M. F., Emtage J. S., White S., Lowe P. A., Patel T., Kingsman A. J., Kingsman S. M. Efficient synthesis of enzymatically active calf chymosin in Saccharomyces cerevisiae. Gene. 1983 Sep;24(1):1–14. doi: 10.1016/0378-1119(83)90126-9. [DOI] [PubMed] [Google Scholar]
  8. Sarthy A. V., McConaughy B. L., Lobo Z., Sundstrom J. A., Furlong C. E., Hall B. D. Expression of the Escherichia coli xylose isomerase gene in Saccharomyces cerevisiae. Appl Environ Microbiol. 1987 Sep;53(9):1996–2000. doi: 10.1128/aem.53.9.1996-2000.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Schiestl R. H., Gietz R. D. High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier. Curr Genet. 1989 Dec;16(5-6):339–346. doi: 10.1007/BF00340712. [DOI] [PubMed] [Google Scholar]
  10. Walfridsson M., Hallborn J., Penttilä M., Keränen S., Hahn-Hägerdal B. Xylose-metabolizing Saccharomyces cerevisiae strains overexpressing the TKL1 and TAL1 genes encoding the pentose phosphate pathway enzymes transketolase and transaldolase. Appl Environ Microbiol. 1995 Dec;61(12):4184–4190. doi: 10.1128/aem.61.12.4184-4190.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES