Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1996 Dec;62(12):4652–4655. doi: 10.1128/aem.62.12.4652-4655.1996

Functional mapping of amino acid residues responsible for the antibacterial action of apidaecin.

S Taguchi 1, A Ozaki 1, K Nakagawa 1, H Momose 1
PMCID: PMC168292  PMID: 8953737

Abstract

Functional mapping was carried out to address the amino acid residues responsible for the activity of the antibacterial peptide apidaecin from the honeybee by an in vivo assay system developed previously. The C-terminal region and many of the proline and arginine residues which are present at high frequency in apidaecin were found to play an important role in its antibacterial activity.

Full Text

The Full Text of this article is available as a PDF (204.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Casteels-Josson K., Capaci T., Casteels P., Tempst P. Apidaecin multipeptide precursor structure: a putative mechanism for amplification of the insect antibacterial response. EMBO J. 1993 Apr;12(4):1569–1578. doi: 10.1002/j.1460-2075.1993.tb05801.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Casteels P., Ampe C., Jacobs F., Tempst P. Functional and chemical characterization of Hymenoptaecin, an antibacterial polypeptide that is infection-inducible in the honeybee (Apis mellifera). J Biol Chem. 1993 Apr 5;268(10):7044–7054. [PubMed] [Google Scholar]
  3. Casteels P., Ampe C., Jacobs F., Vaeck M., Tempst P. Apidaecins: antibacterial peptides from honeybees. EMBO J. 1989 Aug;8(8):2387–2391. doi: 10.1002/j.1460-2075.1989.tb08368.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Casteels P., Romagnolo J., Castle M., Casteels-Josson K., Erdjument-Bromage H., Tempst P. Biodiversity of apidaecin-type peptide antibiotics. Prospects of manipulating the antibacterial spectrum and combating acquired resistance. J Biol Chem. 1994 Oct 21;269(42):26107–26115. [PubMed] [Google Scholar]
  5. Casteels P., Tempst P. Apidaecin-type peptide antibiotics function through a non-poreforming mechanism involving stereospecificity. Biochem Biophys Res Commun. 1994 Feb 28;199(1):339–345. doi: 10.1006/bbrc.1994.1234. [DOI] [PubMed] [Google Scholar]
  6. Taguchi S., Nakagawa K., Maeno M., Momose H. In vivo monitoring system for structure-function relationship analysis of the antibacterial peptide apidaecin. Appl Environ Microbiol. 1994 Oct;60(10):3566–3572. doi: 10.1128/aem.60.10.3566-3572.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Yanisch-Perron C., Vieira J., Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–119. doi: 10.1016/0378-1119(85)90120-9. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES