Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1996 Dec;62(12):4678–4682. doi: 10.1128/aem.62.12.4678-4682.1996

Morphological and metabolic responses to starvation by the dissimilatory metal-reducing bacterium Shewanella alga BrY.

F Caccavo Jr 1, N B Ramsing 1, J W Costerton 1
PMCID: PMC168294  PMID: 8953739

Abstract

The response of the dissimilatory metal-reducing bacterium Shewanella alga BrY to carbon and nitrogen starvation was examined. Starvation resulted in a gradual decrease in the mean cell volume from 0.48 to 0.2 micron 3 and a dramatic decrease in Fe(III) reductase activity. Growth of starved cultures was initiated with O2, ferric oxyhydroxide, Co(III)-EDTA, or Fe(III)-bearing subsurface materials as the sole electron acceptor. Microbially reduced subsurface materials reduced CrO(4)2-. Starvation of dissimilatory metal-reducing bacteria may provide a means of delivering this metabolism to contaminated subsurface environments for in situ bioremediation.

Full Text

The Full Text of this article is available as a PDF (214.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amy P. S., Morita R. Y. Starvation-survival patterns of sixteen freshly isolated open-ocean bacteria. Appl Environ Microbiol. 1983 Mar;45(3):1109–1115. doi: 10.1128/aem.45.3.1109-1115.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Anderson J. I., Heffernan W. P. Isolation and characterization of filterable marine bacteria. J Bacteriol. 1965 Dec;90(6):1713–1718. doi: 10.1128/jb.90.6.1713-1718.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Balch W. E., Fox G. E., Magrum L. J., Woese C. R., Wolfe R. S. Methanogens: reevaluation of a unique biological group. Microbiol Rev. 1979 Jun;43(2):260–296. doi: 10.1128/mr.43.2.260-296.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Balch W. E., Wolfe R. S. New approach to the cultivation of methanogenic bacteria: 2-mercaptoethanesulfonic acid (HS-CoM)-dependent growth of Methanobacterium ruminantium in a pressureized atmosphere. Appl Environ Microbiol. 1976 Dec;32(6):781–791. doi: 10.1128/aem.32.6.781-791.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Boyaval P., Boyaval E., Desmazeaud M. J. Survival of Brevibacterium linens during nutrient starvation and intracellular changes. Arch Microbiol. 1985 Mar;141(2):128–132. doi: 10.1007/BF00423272. [DOI] [PubMed] [Google Scholar]
  6. Bryant M. P. Commentary on the Hungate technique for culture of anaerobic bacteria. Am J Clin Nutr. 1972 Dec;25(12):1324–1328. doi: 10.1093/ajcn/25.12.1324. [DOI] [PubMed] [Google Scholar]
  7. Caccavo F., Blakemore R. P., Lovley D. R. A Hydrogen-Oxidizing, Fe(III)-Reducing Microorganism from the Great Bay Estuary, New Hampshire. Appl Environ Microbiol. 1992 Oct;58(10):3211–3216. doi: 10.1128/aem.58.10.3211-3216.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Caccavo F., Jr, Lonergan D. J., Lovley D. R., Davis M., Stolz J. F., McInerney M. J. Geobacter sulfurreducens sp. nov., a hydrogen- and acetate-oxidizing dissimilatory metal-reducing microorganism. Appl Environ Microbiol. 1994 Oct;60(10):3752–3759. doi: 10.1128/aem.60.10.3752-3759.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chatterjee D. K., Kilbane J. J., Chakrabarty A. M. Biodegradation of 2,4,5-trichlorophenoxyacetic acid in soil by a pure culture of Pseudomonas cepacia. Appl Environ Microbiol. 1982 Aug;44(2):514–516. doi: 10.1128/aem.44.2.514-516.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dawes E. A., Large P. J. Effect of starvation on the viability and cellular constituents of Zymomonas anaerobia and Zymomonas mobilis. J Gen Microbiol. 1970 Jan;60(1):31–42. doi: 10.1099/00221287-60-1-31. [DOI] [PubMed] [Google Scholar]
  11. Edgehill R. U., Finn R. K. Microbial treatment of soil to remove pentachlorophenol. Appl Environ Microbiol. 1983 Mar;45(3):1122–1125. doi: 10.1128/aem.45.3.1122-1125.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gannon J. T., Manilal V. B., Alexander M. Relationship between Cell Surface Properties and Transport of Bacteria through Soil. Appl Environ Microbiol. 1991 Jan;57(1):190–193. doi: 10.1128/aem.57.1.190-193.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Heijman C. G., Holliger C., Glaus M. A., Schwarzenbach R. P., Zeyer J. Abiotic reduction of 4-chloronitrobenzene to 4-chloroaniline in a dissimilatory iron-reducing enrichment culture. Appl Environ Microbiol. 1993 Dec;59(12):4350–4353. doi: 10.1128/aem.59.12.4350-4353.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Heitkamp M. A., Cerniglia C. E. Polycyclic aromatic hydrocarbon degradation by a Mycobacterium sp. in microcosms containing sediment and water from a pristine ecosystem. Appl Environ Microbiol. 1989 Aug;55(8):1968–1973. doi: 10.1128/aem.55.8.1968-1973.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Humphrey B., Kjelleberg S., Marshall K. C. Responses of marine bacteria under starvation conditions at a solid-water interface. Appl Environ Microbiol. 1983 Jan;45(1):43–47. doi: 10.1128/aem.45.1.43-47.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kazumi J., Haggblom M. M., Young L. Y. Degradation of Monochlorinated and Nonchlorinated Aromatic Compounds under Iron-Reducing Conditions. Appl Environ Microbiol. 1995 Nov;61(11):4069–4073. doi: 10.1128/aem.61.11.4069-4073.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kjelleberg S., Humphrey B. A., Marshall K. C. Initial phases of starvation and activity of bacteria at surfaces. Appl Environ Microbiol. 1983 Nov;46(5):978–984. doi: 10.1128/aem.46.5.978-984.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lappin-Scott H. M., Cusack F., MacLeod A., Costerton J. W. Starvation and nutrient resuscitation of Klebsiella pneumoniae isolated from oil well waters. J Appl Bacteriol. 1988 Jun;64(6):541–549. doi: 10.1111/j.1365-2672.1988.tb02445.x. [DOI] [PubMed] [Google Scholar]
  19. Lovley D. R., Phillips E. J. Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl Environ Microbiol. 1988 Jun;54(6):1472–1480. doi: 10.1128/aem.54.6.1472-1480.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lovley D. R., Phillips E. J. Rapid assay for microbially reducible ferric iron in aquatic sediments. Appl Environ Microbiol. 1987 Jul;53(7):1536–1540. doi: 10.1128/aem.53.7.1536-1540.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lovley D. R., Woodward J. C., Chapelle F. H. Rapid Anaerobic Benzene Oxidation with a Variety of Chelated Fe(III) Forms. Appl Environ Microbiol. 1996 Jan;62(1):288–291. doi: 10.1128/aem.62.1.288-291.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lovley D. R., Woodward J. C., Chapelle F. H. Stimulated anoxic biodegradation of aromatic hydrocarbons using Fe(III) ligands. Nature. 1994 Jul 14;370(6485):128–131. doi: 10.1038/370128a0. [DOI] [PubMed] [Google Scholar]
  23. Macleod F. A., Lappin-Scott H. M., Costerton J. W. Plugging of a model rock system by using starved bacteria. Appl Environ Microbiol. 1988 Jun;54(6):1365–1372. doi: 10.1128/aem.54.6.1365-1372.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. POSTGATE J. R., HUNTER J. R. The survival of starved bacteria. J Gen Microbiol. 1962 Oct;29:233–263. doi: 10.1099/00221287-29-2-233. [DOI] [PubMed] [Google Scholar]
  25. Palmer C. D., Wittbrodt P. R. Processes affecting the remediation of chromium-contaminated sites. Environ Health Perspect. 1991 May;92:25–40. doi: 10.1289/ehp.919225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Ramsing N. B., Fossing H., Ferdelman T. G., Andersen F., Thamdrup B. Distribution of bacterial populations in a stratified fjord (Mariager Fjord, Denmark) quantified by in situ hybridization and related to chemical gradients in the water column. Appl Environ Microbiol. 1996 Apr;62(4):1391–1404. doi: 10.1128/aem.62.4.1391-1404.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Roszak D. B., Colwell R. R. Survival strategies of bacteria in the natural environment. Microbiol Rev. 1987 Sep;51(3):365–379. doi: 10.1128/mr.51.3.365-379.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Scherer C. G., Boylen C. W. Macromolecular synthesis and degradation in Arthrobacter during periods of nutrient deprivation. J Bacteriol. 1977 Nov;132(2):584–589. doi: 10.1128/jb.132.2.584-589.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Shaw J. C., Bramhill B., Wardlaw N. C., Costerton J. W. Bacterial fouling in a model core system. Appl Environ Microbiol. 1985 Mar;49(3):693–701. doi: 10.1128/aem.49.3.693-701.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Shupack S. I. The chemistry of chromium and some resulting analytical problems. Environ Health Perspect. 1991 May;92:7–11. doi: 10.1289/ehp.91927. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Torrella F., Morita R. Y. Microcultural study of bacterial size changes and microcolony and ultramicrocolony formation by heterotrophic bacteria in seawater. Appl Environ Microbiol. 1981 Feb;41(2):518–527. doi: 10.1128/aem.41.2.518-527.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. van Overbeek L. S., Eberl L., Givskov M., Molin S., van Elsas J. D. Survival of, and induced stress resistance in, carbon-starved Pseudomonas fluorescens cells residing in soil. Appl Environ Microbiol. 1995 Dec;61(12):4202–4208. doi: 10.1128/aem.61.12.4202-4208.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES