Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1997 Jan;63(1):13–20. doi: 10.1128/aem.63.1.13-20.1997

Isolation, purification, and amino acid sequence of lactobin A, one of the two bacteriocins produced by Lactobacillus amylovorus LMG P-13139.

B G Contreras 1, L De Vuyst 1, B Devreese 1, K Busanyova 1, J Raymaeckers 1, F Bosman 1, E Sablon 1, E J Vandamme 1
PMCID: PMC168297  PMID: 8979334

Abstract

Lactobacillus amylovorus LMG P-13139, isolated from corn steep liquor, produces two bactericidal peptides with respective estimated molecular masses of 4.5 and 6.0 kDa upon denaturing sodium dodecyl sulfatepolyacrylamide gel electrophoresis. The antimicrobial activity detected in the fermentation supernatant fraction of L. amylovorus LMG P-13139 was heat stable (20 min, 121 degrees C), displayed a narrow inhibitory spectrum, and was sensitive to proteinase K, trypsin, and alpha-chymotrypsin but insensitive to alpha-amylase, lysozyme, catalase, and lipase. The 4.5-kDa bacteriocin was purified and characterized and designated lactobin A. Lactobin A was isolated as a floating pellicle from culture supernatant brought to 35% saturation with ammonium sulfate. Upon this ammonium sulfate treatment, crude lactobin A was incorporated, together with Tween 80 as a major contaminant, in high-molecular-mass complexes sized at approximately 670 kDa by gel filtration chromatography. Contaminating fatty acids were removed from these micelles by a simple one-step methanol-chloroform extraction without loss of activity. Both inhibitory peptides were separated in an isocratic isopropanol gradient on a PepRPC 5/5 reversed-phase column, and both peptides retained activity towards Lactobacillus helveticus ATCC 15009 upon separation. Lactobin A has a molecular mass determined by electrospray mass spectrometry of 4,879 +/- 0.69 Da. Its peptide chain contains 50 unmodified amino acids, of which 26% are glycine residues and 40% are hydrophobic residues (A, V, L, I, and P). It displays the highest structural homology (42% identity and 28% similarity) with the lafX gene product, encoded by the second open reading frame of the lactacin F operon. These data strongly indicate that lactobin A belongs to the class IIb bacteriocins according to the classification of Klaenhammer.

Full Text

The Full Text of this article is available as a PDF (293.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allison G. E., Fremaux C., Klaenhammer T. R. Expansion of bacteriocin activity and host range upon complementation of two peptides encoded within the lactacin F operon. J Bacteriol. 1994 Apr;176(8):2235–2241. doi: 10.1128/jb.176.8.2235-2241.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BERRIDGE N. J., NEWTON G. G. F., ABRAHAM E. P. Purification and nature of the antibiotic nisin. Biochem J. 1952 Dec;52(4):529–535. doi: 10.1042/bj0520529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barefoot S. F., Klaenhammer T. R. Purification and characterization of the Lactobacillus acidophilus bacteriocin lactacin B. Antimicrob Agents Chemother. 1984 Sep;26(3):328–334. doi: 10.1128/aac.26.3.328. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. CHEESEMAN G. C., BERRIDGE N. J. An improved method of preparing nisin. Biochem J. 1957 Mar;65(3):603–608. doi: 10.1042/bj0650603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Davey G. P., Richardson B. C. Purification and Some Properties of Diplococcin from Streptococcus cremoris 346. Appl Environ Microbiol. 1981 Jan;41(1):84–89. doi: 10.1128/aem.41.1.84-89.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. De Vuyst L., Vandamme E. J. Influence of the carbon source on nisin production in Lactococcus lactis subsp. lactis batch fermentations. J Gen Microbiol. 1992 Mar;138(3):571–578. doi: 10.1099/00221287-138-3-571. [DOI] [PubMed] [Google Scholar]
  7. Fremaux C., Ahn C., Klaenhammer T. R. Molecular analysis of the lactacin F operon. Appl Environ Microbiol. 1993 Nov;59(11):3906–3915. doi: 10.1128/aem.59.11.3906-3915.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Garver K. I., Muriana P. M. Purification and partial amino acid sequence of curvaticin FS47, a heat-stable bacteriocin produced by Lactobacillus curvatus FS47. Appl Environ Microbiol. 1994 Jun;60(6):2191–2195. doi: 10.1128/aem.60.6.2191-2195.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hastings J. W., Sailer M., Johnson K., Roy K. L., Vederas J. C., Stiles M. E. Characterization of leucocin A-UAL 187 and cloning of the bacteriocin gene from Leuconostoc gelidum. J Bacteriol. 1991 Dec;173(23):7491–7500. doi: 10.1128/jb.173.23.7491-7500.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Holo H., Nilssen O., Nes I. F. Lactococcin A, a new bacteriocin from Lactococcus lactis subsp. cremoris: isolation and characterization of the protein and its gene. J Bacteriol. 1991 Jun;173(12):3879–3887. doi: 10.1128/jb.173.12.3879-3887.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Jack R. W., Tagg J. R., Ray B. Bacteriocins of gram-positive bacteria. Microbiol Rev. 1995 Jun;59(2):171–200. doi: 10.1128/mr.59.2.171-200.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Jiménez-Díaz R., Rios-Sánchez R. M., Desmazeaud M., Ruiz-Barba J. L., Piard J. C. Plantaricins S and T, Two New Bacteriocins Produced by Lactobacillus plantarum LPCO10 Isolated from a Green Olive Fermentation. Appl Environ Microbiol. 1993 May;59(5):1416–1424. doi: 10.1128/aem.59.5.1416-1424.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Joerger M. C., Klaenhammer T. R. Characterization and purification of helveticin J and evidence for a chromosomally determined bacteriocin produced by Lactobacillus helveticus 481. J Bacteriol. 1986 Aug;167(2):439–446. doi: 10.1128/jb.167.2.439-446.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Klaenhammer T. R. Bacteriocins of lactic acid bacteria. Biochimie. 1988 Mar;70(3):337–349. doi: 10.1016/0300-9084(88)90206-4. [DOI] [PubMed] [Google Scholar]
  15. Klaenhammer T. R. Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol Rev. 1993 Sep;12(1-3):39–85. doi: 10.1111/j.1574-6976.1993.tb00012.x. [DOI] [PubMed] [Google Scholar]
  16. Mortvedt-Abildgaa C. I., Nissen-Meyer J., Jelle B., Grenov B., Skaugen M., Nes I. F. Production and pH-Dependent Bactericidal Activity of Lactocin S, a Lantibiotic from Lactobacillus sake L45. Appl Environ Microbiol. 1995 Jan;61(1):175–179. doi: 10.1128/aem.61.1.175-179.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Muriana P. M., Klaenhammer T. R. Purification and partial characterization of lactacin F, a bacteriocin produced by Lactobacillus acidophilus 11088. Appl Environ Microbiol. 1991 Jan;57(1):114–121. doi: 10.1128/aem.57.1.114-121.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Navarre C., Ghislain M., Leterme S., Ferroud C., Dufour J. P., Goffeau A. Purification and complete sequence of a small proteolipid associated with the plasma membrane H(+)-ATPase of Saccharomyces cerevisiae. J Biol Chem. 1992 Mar 25;267(9):6425–6428. [PubMed] [Google Scholar]
  19. Nissen-Meyer J., Holo H., Håvarstein L. S., Sletten K., Nes I. F. A novel lactococcal bacteriocin whose activity depends on the complementary action of two peptides. J Bacteriol. 1992 Sep;174(17):5686–5692. doi: 10.1128/jb.174.17.5686-5692.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Nissen-Meyer J., Larsen A. G., Sletten K., Daeschel M., Nes I. F. Purification and characterization of plantaricin A, a Lactobacillus plantarum bacteriocin whose activity depends on the action of two peptides. J Gen Microbiol. 1993 Sep;139(9):1973–1978. doi: 10.1099/00221287-139-9-1973. [DOI] [PubMed] [Google Scholar]
  21. Piva A., Headon D. R. Pediocin A, a bacteriocin produced by Pediococcus pentosaceus FBB61. Microbiology. 1994 Apr;140(Pt 4):697–702. doi: 10.1099/00221287-140-4-697. [DOI] [PubMed] [Google Scholar]
  22. Schägger H., von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem. 1987 Nov 1;166(2):368–379. doi: 10.1016/0003-2697(87)90587-2. [DOI] [PubMed] [Google Scholar]
  23. Tagg J. R., Dajani A. S., Wannamaker L. W. Bacteriocins of gram-positive bacteria. Bacteriol Rev. 1976 Sep;40(3):722–756. doi: 10.1128/br.40.3.722-756.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Upreti G. C., Hinsdill R. D. Isolation and characterization of a bacteriocin from a homofermentative Lactobacillus. Antimicrob Agents Chemother. 1973 Oct;4(4):487–494. doi: 10.1128/aac.4.4.487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Yang R., Johnson M. C., Ray B. Novel method to extract large amounts of bacteriocins from lactic acid bacteria. Appl Environ Microbiol. 1992 Oct;58(10):3355–3359. doi: 10.1128/aem.58.10.3355-3359.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Zajdel J. K., Ceglowski P., Dobrazański W. T. Mechanism of action of lactostrepcin 5, a bacteriocin produced by Streptococcus cremoris 202. Appl Environ Microbiol. 1985 Apr;49(4):969–974. doi: 10.1128/aem.49.4.969-974.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. de Klerk H. C., Smit J. A. Properties of a Lactobacillus fermenti bacteriocin. J Gen Microbiol. 1967 Aug;48(2):309–316. doi: 10.1099/00221287-48-2-309. [DOI] [PubMed] [Google Scholar]
  28. ten Brink B., Minekus M., van der Vossen J. M., Leer R. J., Huis in't Veld J. H. Antimicrobial activity of lactobacilli: preliminary characterization and optimization of production of acidocin B, a novel bacteriocin produced by Lactobacillus acidophilus M46. J Appl Bacteriol. 1994 Aug;77(2):140–148. doi: 10.1111/j.1365-2672.1994.tb03057.x. [DOI] [PubMed] [Google Scholar]
  29. van Laack R. L., Schillinger U., Holzapfel W. H. Characterization and partial purification of a bacteriocin produced by Leuconostoc carnosum LA44A. Int J Food Microbiol. 1992 Jul;16(3):183–195. doi: 10.1016/0168-1605(92)90079-i. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES