Abstract
Surfactin, a cyclic lipopeptide antibiotic and biosurfactant produced by Bacillus subtilis, is well-known for its interactions with artificial and biomembrane systems (e.g., bacterial protoplasts or enveloped viruses). To assess the applicability of this antiviral and antibacterial drug, we determined the cytotoxicity of surfactin with a 50% cytotoxic concentration of 30 to 64 microM for a variety of human and animal cell lines in vitro. Concomitantly, we observed an improvement in proliferation rates and changes in the morphology of mycoplasma-contaminated mammalian cells after treatment with this drug. A single treatment over one passage led to complete removal of viable Mycoplasma hyorhinis cells from various adherent cell lines, and Mycoplasma orale was removed from nonadherent human T-lymphoid cell lines by double treatment. This effect was monitored by a DNA fluorescence test, an enzyme-linked immunosorbent assay, and two different PCR methods. Disintegration of the mycoplasma membranes as observed by electron microscopy indicated the mode of action of surfactin. Disintegration is obviously due to a physicochemical interaction of the membrane-active surfactant with the outer part of the lipid membrane bilayer, which causes permeability changes and at higher concentrations leads finally to disintegration of the mycoplasma membrane system by a detergent effect. The low cytotoxicity of surfactin for mammalian cells permits specific inactivation of mycoplasmas without significant deleterious effects on cell metabolism and the proliferation rate in cell culture. These results were used to develop a fast and simple method for complete and permanent inactivation of mycoplasmas in mammalian monolayer and suspension cell cultures.
Full Text
The Full Text of this article is available as a PDF (490.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baumgart F., Kluge B., Ullrich C., Vater J., Ziessow D. Identification of amino acid substitutions in the lipopeptide surfactin using 2D NMR spectroscopy. Biochem Biophys Res Commun. 1991 Jun 28;177(3):998–1005. doi: 10.1016/0006-291x(91)90637-m. [DOI] [PubMed] [Google Scholar]
- Bernheimer A. W., Avigad L. S. Nature and properties of a cytolytic agent produced by Bacillus subtilis. J Gen Microbiol. 1970 Jun;61(3):361–369. doi: 10.1099/00221287-61-3-361. [DOI] [PubMed] [Google Scholar]
- Blanchard A., Montagnier L. AIDS-associated mycoplasmas. Annu Rev Microbiol. 1994;48:687–712. doi: 10.1146/annurev.mi.48.100194.003351. [DOI] [PubMed] [Google Scholar]
- Chowdhury M. I., Munakata T., Koyanagi Y., Arai S., Yamamoto N. Mycoplasma stimulates HIV-1 expression from acutely- and dormantly-infected promonocyte/monoblastoid cell lines. Arch Virol. 1994;139(3-4):431–438. doi: 10.1007/BF01310804. [DOI] [PubMed] [Google Scholar]
- Fleckenstein E., Uphoff C. C., Drexler H. G. Effective treatment of mycoplasma contamination in cell lines with enrofloxacin (Baytril). Leukemia. 1994 Aug;8(8):1424–1434. [PubMed] [Google Scholar]
- Flick D. A., Gifford G. E. Comparison of in vitro cell cytotoxic assays for tumor necrosis factor. J Immunol Methods. 1984 Mar 30;68(1-2):167–175. doi: 10.1016/0022-1759(84)90147-9. [DOI] [PubMed] [Google Scholar]
- Gelderblom H. R., Hausmann E. H., Ozel M., Pauli G., Koch M. A. Fine structure of human immunodeficiency virus (HIV) and immunolocalization of structural proteins. Virology. 1987 Jan;156(1):171–176. doi: 10.1016/0042-6822(87)90449-1. [DOI] [PubMed] [Google Scholar]
- Hay R. J., Macy M. L., Chen T. R. Mycoplasma infection of cultured cells. Nature. 1989 Jun 8;339(6224):487–488. doi: 10.1038/339487a0. [DOI] [PubMed] [Google Scholar]
- Hosono K., Suzuki H. Acylpeptides, the inhibitors of cyclic adenosine 3',5'-monophosphate phosphodiesterase. III. Inhibition of cyclic AMP phosphodiesterase. J Antibiot (Tokyo) 1983 Jun;36(6):679–683. doi: 10.7164/antibiotics.36.679. [DOI] [PubMed] [Google Scholar]
- Hosono K., Suzuki H. Morphological transformation of Chinese hamster cells by acylpeptides, inhibitors of cAMP phosphodiesterase, produced by Bacillus subtilis. J Biol Chem. 1985 Sep 15;260(20):11252–11255. [PubMed] [Google Scholar]
- Kameda Y., Oira S., Matsui K., Kanatomo S., Hase T. Antitumor activity of bacillus natto. V. Isolation and characterization of surfactin in the culture medium of Bacillus natto KMD 2311. Chem Pharm Bull (Tokyo) 1974 Apr;22(4):938–944. doi: 10.1248/cpb.22.938. [DOI] [PubMed] [Google Scholar]
- Lin S. C., Minton M. A., Sharma M. M., Georgiou G. Structural and immunological characterization of a biosurfactant produced by Bacillus licheniformis JF-2. Appl Environ Microbiol. 1994 Jan;60(1):31–38. doi: 10.1128/aem.60.1.31-38.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maget-Dana R., Ptak M. Interactions of surfactin with membrane models. Biophys J. 1995 May;68(5):1937–1943. doi: 10.1016/S0006-3495(95)80370-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983 Dec 16;65(1-2):55–63. doi: 10.1016/0022-1759(83)90303-4. [DOI] [PubMed] [Google Scholar]
- Razin S. The mycoplasmas. Microbiol Rev. 1978 Jun;42(2):414–470. doi: 10.1128/mr.42.2.414-470.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rottem S. Membrane lipids of mycoplasmas. Biochim Biophys Acta. 1980 May 27;604(1):65–90. doi: 10.1016/0005-2736(80)90585-4. [DOI] [PubMed] [Google Scholar]
- Russell W. C., Newman C., Williamson D. H. A simple cytochemical technique for demonstration of DNA in cells infected with mycoplasmas and viruses. Nature. 1975 Feb 6;253(5491):461–462. doi: 10.1038/253461a0. [DOI] [PubMed] [Google Scholar]
- Schmidt J., Erfle V. Elimination of mycoplasmas from cell cultures and establishment of mycoplasma-free cell lines. Exp Cell Res. 1984 Jun;152(2):565–570. doi: 10.1016/0014-4827(84)90659-1. [DOI] [PubMed] [Google Scholar]
- Sheppard J. D., Jumarie C., Cooper D. G., Laprade R. Ionic channels induced by surfactin in planar lipid bilayer membranes. Biochim Biophys Acta. 1991 Apr 26;1064(1):13–23. doi: 10.1016/0005-2736(91)90406-x. [DOI] [PubMed] [Google Scholar]
- Toraya T., Maoka T., Tsuji H., Kobayashi M. Purification and structural determination of an inhibitor of starfish oocyte maturation from a Bacillus species. Appl Environ Microbiol. 1995 May;61(5):1799–1804. doi: 10.1128/aem.61.5.1799-1804.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tsukagoshi N., Tamura G., Arima K. A novel protoplast-bursting factor (surfactin) obtained from bacillus subtilis IAM 1213. II. The interaction of surfactin with bacterial membranes and lipids. Biochim Biophys Acta. 1970;196(2):211–214. doi: 10.1016/0005-2736(70)90008-8. [DOI] [PubMed] [Google Scholar]
- Uphoff C. C., Gignac S. M., Drexler H. G. Mycoplasma contamination in human leukemia cell lines. II. Elimination with various antibiotics. J Immunol Methods. 1992 Apr 27;149(1):55–62. doi: 10.1016/s0022-1759(12)80048-2. [DOI] [PubMed] [Google Scholar]
- van Kuppeveld F. J., Johansson K. E., Galama J. M., Kissing J., Bölske G., van der Logt J. T., Melchers W. J. Detection of mycoplasma contamination in cell cultures by a mycoplasma group-specific PCR. Appl Environ Microbiol. 1994 Jan;60(1):149–152. doi: 10.1128/aem.60.1.149-152.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]