Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1997 Jan;63(1):122–127. doi: 10.1128/aem.63.1.122-127.1997

Stable expression of pertussis toxin in Bordetella bronchiseptica under the control of a tightly regulated promoter.

A Suarez 1, L H Staendner 1, M Rohde 1, G Piatti 1, K N Timmis 1, C A Guzmán 1
PMCID: PMC168309  PMID: 8979346

Abstract

Pertussis toxin (PT) is an essential component of accellular vaccines against whooping cough. However, the industrial production of PT from Bordetella pertussis is impaired by slow growth and poor yields. To overcome these problems, we have constructed a minitransposon containing the tox operon under the control of a tightly regulated promoter responsive to an aromatic inducer. The expression cassettes have been integrated into the chromosome of Bordetella bronchiseptica 5376 and ATCC 10580 bvg. Five recombinant clones containing the tox operon under the control of the Psal promoter, which is activated by the product of nahR, were further characterized. The recombinant clones expressed PT after only 3 h of induction with sodium salicylate at levels similar to those of B. pertussis grown for 24 h. The stability of the engineered phenotype was 100% after 72 h of growth without selective pressure. The growth pattern was not modified either under noninducing conditions or in the presence of the inducer at low concentrations, suggesting that strain performance would not be affected in bioreactors when uncoupled from gene expression. Recombinant PT, which was localized mainly in the periplasm, was purified by affinity chromatography. The recombinant protein was immunologically indistinguishable from wild-type PT and retained its biological activity as determined by the CHO cell-clustering test. These recombinant clones appear to be useful tools for the cost-effective production of PT under conditions of improved biosafety, as demonstrated by the inducible expression of PT uncoupled from the bacterial biomass in a nonvirulent and fast-growing B. bronchiseptica background.

Full Text

The Full Text of this article is available as a PDF (357.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Auerswald E. A., Ludwig G., Schaller H. Structural analysis of Tn5. Cold Spring Harb Symp Quant Biol. 1981;45(Pt 1):107–113. doi: 10.1101/sqb.1981.045.01.019. [DOI] [PubMed] [Google Scholar]
  2. Baker S. M., Masi A., Liu D. F., Novitsky B. K., Deich R. A. Pertussis toxin export genes are regulated by the ptx promoter and may be required for efficient translation of ptx mRNA in Bordetella pertussis. Infect Immun. 1995 Oct;63(10):3920–3926. doi: 10.1128/iai.63.10.3920-3926.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Burnette W. N. "Western blotting": electrophoretic transfer of proteins from sodium dodecyl sulfate--polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal Biochem. 1981 Apr;112(2):195–203. doi: 10.1016/0003-2697(81)90281-5. [DOI] [PubMed] [Google Scholar]
  4. Decker M. D., Edwards K. M., Steinhoff M. C., Rennels M. B., Pichichero M. E., Englund J. A., Anderson E. L., Deloria M. A., Reed G. F. Comparison of 13 acellular pertussis vaccines: adverse reactions. Pediatrics. 1995 Sep;96(3 Pt 2):557–566. [PubMed] [Google Scholar]
  5. Edwards K. M., Meade B. D., Decker M. D., Reed G. F., Rennels M. B., Steinhoff M. C., Anderson E. L., Englund J. A., Pichichero M. E., Deloria M. A. Comparison of 13 acellular pertussis vaccines: overview and serologic response. Pediatrics. 1995 Sep;96(3 Pt 2):548–557. [PubMed] [Google Scholar]
  6. Eidels L., Proia R. L., Hart D. A. Membrane receptors for bacterial toxins. Microbiol Rev. 1983 Dec;47(4):596–620. doi: 10.1128/mr.47.4.596-620.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Greco D., Salmaso S., Mastrantonio P., Giuliano M., Tozzi A. E., Anemona A., Ciofi degli Atti M. L., Giammanco A., Panei P., Blackwelder W. C. A controlled trial of two acellular vaccines and one whole-cell vaccine against pertussis. Progetto Pertosse Working Group. N Engl J Med. 1996 Feb 8;334(6):341–348. doi: 10.1056/NEJM199602083340601. [DOI] [PubMed] [Google Scholar]
  8. Gustafsson L., Hallander H. O., Olin P., Reizenstein E., Storsaeter J. A controlled trial of a two-component acellular, a five-component acellular, and a whole-cell pertussis vaccine. N Engl J Med. 1996 Feb 8;334(6):349–355. doi: 10.1056/NEJM199602083340602. [DOI] [PubMed] [Google Scholar]
  9. Herrero M., de Lorenzo V., Timmis K. N. Transposon vectors containing non-antibiotic resistance selection markers for cloning and stable chromosomal insertion of foreign genes in gram-negative bacteria. J Bacteriol. 1990 Nov;172(11):6557–6567. doi: 10.1128/jb.172.11.6557-6567.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hewlett E. L., Sauer K. T., Myers G. A., Cowell J. L., Guerrant R. L. Induction of a novel morphological response in Chinese hamster ovary cells by pertussis toxin. Infect Immun. 1983 Jun;40(3):1198–1203. doi: 10.1128/iai.40.3.1198-1203.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Imaizumi A., Suzuki Y., Ono S., Sato H., Sato Y. Effect of heptakis (2,6-O-dimethyl) beta-cyclodextrin on the production of pertussis toxin by Bordetella pertussis. Infect Immun. 1983 Sep;41(3):1138–1143. doi: 10.1128/iai.41.3.1138-1143.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Johnson F. D., Burns D. L. Detection and subcellular localization of three Ptl proteins involved in the secretion of pertussis toxin from Bordetella pertussis. J Bacteriol. 1994 Sep;176(17):5350–5356. doi: 10.1128/jb.176.17.5350-5356.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kimura A., Mountzouros K. T., Schad P. A., Cieplak W., Cowell J. L. Pertussis toxin analog with reduced enzymatic and biological activities is a protective immunogen. Infect Immun. 1990 Oct;58(10):3337–3347. doi: 10.1128/iai.58.10.3337-3347.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  15. Lee C. K., Roberts A., Perrin S. Expression of pertussis toxin in Bordetella bronchiseptica and Bordetella parapertussis carrying recombinant plasmids. Infect Immun. 1989 May;57(5):1413–1418. doi: 10.1128/iai.57.5.1413-1418.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lee S. Y. High cell-density culture of Escherichia coli. Trends Biotechnol. 1996 Mar;14(3):98–105. doi: 10.1016/0167-7799(96)80930-9. [DOI] [PubMed] [Google Scholar]
  17. Licari P., Siber G. R., Swartz R. Production of cell mass and pertussis toxin by Bordetella pertussis. J Biotechnol. 1991 Sep;20(2):117–129. doi: 10.1016/0168-1656(91)90221-g. [DOI] [PubMed] [Google Scholar]
  18. Locht C., Keith J. M. Pertussis toxin gene: nucleotide sequence and genetic organization. Science. 1986 Jun 6;232(4755):1258–1264. doi: 10.1126/science.3704651. [DOI] [PubMed] [Google Scholar]
  19. Loosmore S. M., Zealey G. R., Boux H. A., Cockle S. A., Radika K., Fahim R. E., Zobrist G. J., Yacoob R. K., Chong P. C., Yao F. L. Engineering of genetically detoxified pertussis toxin analogs for development of a recombinant whooping cough vaccine. Infect Immun. 1990 Nov;58(11):3653–3662. doi: 10.1128/iai.58.11.3653-3662.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Nencioni L., Pizza M., Bugnoli M., De Magistris T., Di Tommaso A., Giovannoni F., Manetti R., Marsili I., Matteucci G., Nucci D. Characterization of genetically inactivated pertussis toxin mutants: candidates for a new vaccine against whooping cough. Infect Immun. 1990 May;58(5):1308–1315. doi: 10.1128/iai.58.5.1308-1315.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Nicosia A., Bartoloni A., Perugini M., Rappuoli R. Expression and immunological properties of the five subunits of pertussis toxin. Infect Immun. 1987 Apr;55(4):963–967. doi: 10.1128/iai.55.4.963-967.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Sato H., Sato Y., Ito A., Ohishi I. Effect of monoclonal antibody to pertussis toxin on toxin activity. Infect Immun. 1987 Apr;55(4):909–915. doi: 10.1128/iai.55.4.909-915.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Sato Y., Arai H. Leucocytosis-promoting factor of Bordetella pertussis. I. Purification and characterization. Infect Immun. 1972 Dec;6(6):899–904. doi: 10.1128/iai.6.6.899-904.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Staendner L. H., Rohde M., Timmis K. N., Guzmán C. A. Identification of Salmonella typhi promoters activated by invasion of eukaryotic cells. Mol Microbiol. 1995 Dec;18(5):891–902. doi: 10.1111/j.1365-2958.1995.18050891.x. [DOI] [PubMed] [Google Scholar]
  25. Stainer D. W., Scholte M. J. A simple chemically defined medium for the production of phase I Bordetella pertussis. J Gen Microbiol. 1970 Oct;63(2):211–220. doi: 10.1099/00221287-63-2-211. [DOI] [PubMed] [Google Scholar]
  26. Stein P. E., Boodhoo A., Armstrong G. D., Cockle S. A., Klein M. H., Read R. J. The crystal structure of pertussis toxin. Structure. 1994 Jan 15;2(1):45–57. doi: 10.1016/s0969-2126(00)00007-1. [DOI] [PubMed] [Google Scholar]
  27. Steinhoff M. C., Reed G. F., Decker M. D., Edwards K. M., Englund J. A., Pichichero M. E., Rennels M. B., Anderson E. L., Deloria M. A., Meade B. D. A randomized comparison of reactogenicity and immunogenicity of two whole-cell pertussis vaccines. Pediatrics. 1995 Sep;96(3 Pt 2):567–570. [PubMed] [Google Scholar]
  28. Stibitz S., Aaronson W., Monack D., Falkow S. Phase variation in Bordetella pertussis by frameshift mutation in a gene for a novel two-component system. Nature. 1989 Mar 16;338(6212):266–269. doi: 10.1038/338266a0. [DOI] [PubMed] [Google Scholar]
  29. Tamura M., Nogimori K., Murai S., Yajima M., Ito K., Katada T., Ui M., Ishii S. Subunit structure of islet-activating protein, pertussis toxin, in conformity with the A-B model. Biochemistry. 1982 Oct 26;21(22):5516–5522. doi: 10.1021/bi00265a021. [DOI] [PubMed] [Google Scholar]
  30. Walker M. J., Rohde M., Wehland J., Timmis K. N. Construction of minitransposons for constitutive and inducible expression of pertussis toxin in bvg-negative Bordetella bronchiseptica. Infect Immun. 1991 Nov;59(11):4238–4248. doi: 10.1128/iai.59.11.4238-4248.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Walker M. J., Wehland J., Timmis K. N., Raupach B., Schmidt M. A. Characterization of murine monoclonal antibodies that recognize defined epitopes of pertussis toxin and neutralize its toxic effect on Chinese hamster ovary cells. Infect Immun. 1991 Nov;59(11):4249–4251. doi: 10.1128/iai.59.11.4249-4251.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Weiss A. A., Johnson F. D., Burns D. L. Molecular characterization of an operon required for pertussis toxin secretion. Proc Natl Acad Sci U S A. 1993 Apr 1;90(7):2970–2974. doi: 10.1073/pnas.90.7.2970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Witvliet M. H., Burns D. L., Brennan M. J., Poolman J. T., Manclark C. R. Binding of pertussis toxin to eucaryotic cells and glycoproteins. Infect Immun. 1989 Nov;57(11):3324–3330. doi: 10.1128/iai.57.11.3324-3330.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Yang J., Mou J., Shao Z. Structure and stability of pertussis toxin studied by in situ atomic force microscopy. FEBS Lett. 1994 Jan 24;338(1):89–92. doi: 10.1016/0014-5793(94)80122-3. [DOI] [PubMed] [Google Scholar]
  35. Zealey G. R., Loosmore S. M., Yacoob R. K., Cockle S. A., Herbert A. B., Miller L. D., Mackay N. J., Klein M. H. Construction of Bordetella pertussis strains that overproduce genetically inactivated pertussis toxin. Appl Environ Microbiol. 1992 Jan;58(1):208–214. doi: 10.1128/aem.58.1.208-214.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. de Lorenzo V., Fernández S., Herrero M., Jakubzik U., Timmis K. N. Engineering of alkyl- and haloaromatic-responsive gene expression with mini-transposons containing regulated promoters of biodegradative pathways of Pseudomonas. Gene. 1993 Aug 16;130(1):41–46. doi: 10.1016/0378-1119(93)90344-3. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES