Skip to main content
American Journal of Human Genetics logoLink to American Journal of Human Genetics
. 1991 Jun;48(6):1069–1074.

Uniparental heterodisomy for chromosome 14 in a phenotypically abnormal familial balanced 13/14 Robertsonian translocation carrier.

J C Wang 1, M B Passage 1, P H Yen 1, L J Shapiro 1, T K Mohandas 1
PMCID: PMC1683099  PMID: 2035528

Abstract

A 9-year-old mentally retarded girl with multiple congenital anomalies was found to carry a balanced 13/14 Robertsonian translocation [45,XX,t(13q14q)] which was also present in her father. Her mother carried a balanced reciprocal translocation between chromosomes 1 and 14 [46,XX,t(1;14) (q32;q32)]. Both of her parents were phenotypically normal. Molecular studies were carried out to determine the parental origin of chromosomes 1, 13, and 14 in the patient. Using probes for D14S13 and D14S22, we could show that the patient inherited both chromosomes 14 from her father and none from her mother. Similar studies using probes for chromosomes 1 (D1S76) and 13 (D13S37) loci showed the presence of both maternal and paternal alleles in the patient. Our findings indicate that paternal uniparental heterodisomy for chromosome 14 most likely accounts for the phenotypic abnormalities observed in our patient. It is suggested that uniparental disomy may be the basis for abnormal development in at least some phenotypically abnormal familial balanced-translocation carriers.

Full text

PDF
1069

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cattanach B. M. Parental origin effects in mice. J Embryol Exp Morphol. 1986 Oct;97 (Suppl):137–150. [PubMed] [Google Scholar]
  2. Hadchouel M., Farza H., Simon D., Tiollais P., Pourcel C. Maternal inhibition of hepatitis B surface antigen gene expression in transgenic mice correlates with de novo methylation. Nature. 1987 Oct 1;329(6138):454–456. doi: 10.1038/329454a0. [DOI] [PubMed] [Google Scholar]
  3. Hall J. G. Genomic imprinting: review and relevance to human diseases. Am J Hum Genet. 1990 May;46(5):857–873. [PMC free article] [PubMed] [Google Scholar]
  4. Laskey R. A. The use of intensifying screens or organic scintillators for visualizing radioactive molecules resolved by gel electrophoresis. Methods Enzymol. 1980;65(1):363–371. doi: 10.1016/s0076-6879(80)65047-2. [DOI] [PubMed] [Google Scholar]
  5. McGrath J., Solter D. Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell. 1984 May;37(1):179–183. doi: 10.1016/0092-8674(84)90313-1. [DOI] [PubMed] [Google Scholar]
  6. Nakamura Y., Leppert M., O'Connell P., Wolff R., Holm T., Culver M., Martin C., Fujimoto E., Hoff M., Kumlin E. Variable number of tandem repeat (VNTR) markers for human gene mapping. Science. 1987 Mar 27;235(4796):1616–1622. doi: 10.1126/science.3029872. [DOI] [PubMed] [Google Scholar]
  7. Nakamura Y., Martin C., Ballard L., O'Connell P., Leppert M., Lathrop G. M., Lalouel J. M., White R. Isolation and mapping of a polymorphic DNA sequence (pCMM66) on chromosome 14 [D14S22]. Nucleic Acids Res. 1988 Jul 11;16(13):6255–6255. doi: 10.1093/nar/16.13.6255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Nakamura Y., Martin C., Myers R., White R. Isolation and mapping of a polymorphic DNA sequence (pCMM12) on chromosome 1p [D1S76]. Nucleic Acids Res. 1988 Oct 11;16(19):9368–9368. doi: 10.1093/nar/16.19.9368. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Nicholls R. D., Knoll J. H., Butler M. G., Karam S., Lalande M. Genetic imprinting suggested by maternal heterodisomy in nondeletion Prader-Willi syndrome. Nature. 1989 Nov 16;342(6247):281–285. doi: 10.1038/342281a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Reik W., Collick A., Norris M. L., Barton S. C., Surani M. A. Genomic imprinting determines methylation of parental alleles in transgenic mice. Nature. 1987 Jul 16;328(6127):248–251. doi: 10.1038/328248a0. [DOI] [PubMed] [Google Scholar]
  11. Sapienza C., Peterson A. C., Rossant J., Balling R. Degree of methylation of transgenes is dependent on gamete of origin. Nature. 1987 Jul 16;328(6127):251–254. doi: 10.1038/328251a0. [DOI] [PubMed] [Google Scholar]
  12. Spence J. E., Perciaccante R. G., Greig G. M., Willard H. F., Ledbetter D. H., Hejtmancik J. F., Pollack M. S., O'Brien W. E., Beaudet A. L. Uniparental disomy as a mechanism for human genetic disease. Am J Hum Genet. 1988 Feb;42(2):217–226. [PMC free article] [PubMed] [Google Scholar]
  13. Surani M. A., Barton S. C., Norris M. L. Development of reconstituted mouse eggs suggests imprinting of the genome during gametogenesis. Nature. 1984 Apr 5;308(5959):548–550. doi: 10.1038/308548a0. [DOI] [PubMed] [Google Scholar]
  14. Swain J. L., Stewart T. A., Leder P. Parental legacy determines methylation and expression of an autosomal transgene: a molecular mechanism for parental imprinting. Cell. 1987 Aug 28;50(5):719–727. doi: 10.1016/0092-8674(87)90330-8. [DOI] [PubMed] [Google Scholar]
  15. Voss R., Ben-Simon E., Avital A., Godfrey S., Zlotogora J., Dagan J., Tikochinski Y., Hillel J. Isodisomy of chromosome 7 in a patient with cystic fibrosis: could uniparental disomy be common in humans? Am J Hum Genet. 1989 Sep;45(3):373–380. [PMC free article] [PubMed] [Google Scholar]

Articles from American Journal of Human Genetics are provided here courtesy of American Society of Human Genetics

RESOURCES