Abstract
Mutants of Saccharomyces cerevisiae, in which one or both of the genes encoding the two isoforms of NAD-dependent glycerol-3-phosphate dehydrogenase had been deleted, were studied in aerobic batch cultures and in aerobic-anaerobic step change experiments. The respirofermentative growth rates under aerobic conditions with semisynthetic medium (20 g of glucose per liter) of two single mutants, gpd1 delta and gpd2 delta, and the parental strain (mu = 0.5 h-1) were almost identical, whereas the growth rate of a double mutant, gpd1 delta gpd2 delta, was approximately half that of the parental strain. Upon a step change from aerobic to anaerobic conditions in the exponential growth phase, the specific carbon dioxide evolution rates (CER) of the wild-type strain and the gpd1 delta strain were almost unchanged. The gpd2 delta mutant showed an immediate, large (> 50%) decrease in CER upon a change to anaerobic conditions. However, after about 45 min the CER increased again, although not to the same level as under aerobic conditions. The gpd1 delta gpd2 delta mutant showed a drastic fermentation rate decrease upon a transition to anaerobic conditions. However, the CER values increased to and even exceeded the aerobic levels after the addition of acetoin. High-pressure liquid chromatographic analyses demonstrated that the added acetoin served as an acceptor of reducing equivalents by being reduced to butanediol. The results clearly show the necessity of glycerol formation as a redox sink for S. cerevisiae under anaerobic conditions.
Full Text
The Full Text of this article is available as a PDF (224.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Albertyn J., Hohmann S., Thevelein J. M., Prior B. A. GPD1, which encodes glycerol-3-phosphate dehydrogenase, is essential for growth under osmotic stress in Saccharomyces cerevisiae, and its expression is regulated by the high-osmolarity glycerol response pathway. Mol Cell Biol. 1994 Jun;14(6):4135–4144. doi: 10.1128/mcb.14.6.4135. [DOI] [PMC free article] [PubMed] [Google Scholar]
- André L., Hemming A., Adler L. Osmoregulation in Saccharomyces cerevisiae. Studies on the osmotic induction of glycerol production and glycerol-3-phosphate dehydrogenase (NAD+) FEBS Lett. 1991 Jul 29;286(1-2):13–17. doi: 10.1016/0014-5793(91)80930-2. [DOI] [PubMed] [Google Scholar]
- Blomberg A., Adler L. Physiology of osmotolerance in fungi. Adv Microb Physiol. 1992;33:145–212. doi: 10.1016/s0065-2911(08)60217-9. [DOI] [PubMed] [Google Scholar]
- Blomberg A., Adler L. Roles of glycerol and glycerol-3-phosphate dehydrogenase (NAD+) in acquired osmotolerance of Saccharomyces cerevisiae. J Bacteriol. 1989 Feb;171(2):1087–1092. doi: 10.1128/jb.171.2.1087-1092.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Deckert J., Rodriguez Torres A. M., Simon J. T., Zitomer R. S. Mutational analysis of Rox1, a DNA-bending repressor of hypoxic genes in Saccharomyces cerevisiae. Mol Cell Biol. 1995 Nov;15(11):6109–6117. doi: 10.1128/mcb.15.11.6109. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eriksson P., André L., Ansell R., Blomberg A., Adler L. Cloning and characterization of GPD2, a second gene encoding sn-glycerol 3-phosphate dehydrogenase (NAD+) in Saccharomyces cerevisiae, and its comparison with GPD1. Mol Microbiol. 1995 Jul;17(1):95–107. doi: 10.1111/j.1365-2958.1995.mmi_17010095.x. [DOI] [PubMed] [Google Scholar]
- HOLZER H., BERNHARDT W., SCHNEIDER S. [On glycerin formation in baker's yeast]. Biochem Z. 1963;336:495–509. [PubMed] [Google Scholar]
- Lagunas R., Gancedo J. M. Reduced pyridine-nucleotides balance in glucose-growing Saccharomyces cerevisiae. Eur J Biochem. 1973 Aug 1;37(1):90–94. doi: 10.1111/j.1432-1033.1973.tb02961.x. [DOI] [PubMed] [Google Scholar]
- Larsson K., Ansell R., Eriksson P., Adler L. A gene encoding sn-glycerol 3-phosphate dehydrogenase (NAD+) complements an osmosensitive mutant of Saccharomyces cerevisiae. Mol Microbiol. 1993 Dec;10(5):1101–1111. doi: 10.1111/j.1365-2958.1993.tb00980.x. [DOI] [PubMed] [Google Scholar]
- Nordström K. Yeast growth and glycerol formation. Acta Chem Scand. 1966;20(4):1016–1025. doi: 10.3891/acta.chem.scand.20-1016. [DOI] [PubMed] [Google Scholar]
- Rosenblum-Vos L. S., Rhodes L., Evangelista C. C., Jr, Boayke K. A., Zitomer R. S. The ROX3 gene encodes an essential nuclear protein involved in CYC7 gene expression in Saccharomyces cerevisiae. Mol Cell Biol. 1991 Nov;11(11):5639–5647. doi: 10.1128/mcb.11.11.5639. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taherzadeh M. J., Lidén G., Gustafsson L., Niklasson C. The effects of pantothenate deficiency and acetate addition on anaerobic batch fermentation of glucose by Saccharomyces cerevisiae. Appl Microbiol Biotechnol. 1996 Sep;46(2):176–182. doi: 10.1007/s002530050801. [DOI] [PubMed] [Google Scholar]
- Verduyn C., Postma E., Scheffers W. A., Van Dijken J. P. Effect of benzoic acid on metabolic fluxes in yeasts: a continuous-culture study on the regulation of respiration and alcoholic fermentation. Yeast. 1992 Jul;8(7):501–517. doi: 10.1002/yea.320080703. [DOI] [PubMed] [Google Scholar]
- Verduyn C., Postma E., Scheffers W. A., van Dijken J. P. Physiology of Saccharomyces cerevisiae in anaerobic glucose-limited chemostat cultures. J Gen Microbiol. 1990 Mar;136(3):395–403. doi: 10.1099/00221287-136-3-395. [DOI] [PubMed] [Google Scholar]
- Wang H. T., Rahaim P., Robbins P., Yocum R. R. Cloning, sequence, and disruption of the Saccharomyces diastaticus DAR1 gene encoding a glycerol-3-phosphate dehydrogenase. J Bacteriol. 1994 Nov;176(22):7091–7095. doi: 10.1128/jb.176.22.7091-7095.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zitomer R. S., Lowry C. V. Regulation of gene expression by oxygen in Saccharomyces cerevisiae. Microbiol Rev. 1992 Mar;56(1):1–11. doi: 10.1128/mr.56.1.1-11.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]