Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1997 Jan;63(1):169–177. doi: 10.1128/aem.63.1.169-177.1997

Purification and characterization of extremely thermostable beta-mannanase, beta-mannosidase, and alpha-galactosidase from the hyperthermophilic eubacterium Thermotoga neapolitana 5068.

G D Duffaud 1, C M McCutchen 1, P Leduc 1, K N Parker 1, R M Kelly 1
PMCID: PMC168313  PMID: 8979350

Abstract

Thermostable and thermoactive beta-mannanase (1,4-beta-D-mannan mannanohydrolase [EC 3.2.1.78]), beta-mannosidase (beta-D-mannopyranoside hydrolase [EC 3.2.1.25]) and alpha-galactosidase (alpha-D-galactoside galactohydrolase [EC 3.2.1.22]) were purified to homogeneity from cell extracts and extracellular culture supernatants of the hyperthermophilic eubacterium Thermotoga neapolitana 5068 grown on guar gum-based media. The beta-mannanase was an extracellular monomeric enzyme with a molecular mass of 65 kDa. The optimal temperature for activity was 90 to 92 degrees C, with half-lives (t1/2) of 34 h at 85 degrees C, 13 h at 90 degrees C, and 35 min at 100 degrees C. The beta-mannosidase and alpha-galactosidase were found primarily in cell extracts. The beta-mannosidase was a homodimer consisting of approximately 100-kDa molecular mass subunits. The optimal temperature for activity was 87 degrees C, with t1/2 of 18 h at 85 degrees C, 42 min at 90 degrees C, and 2 min at 98 degrees C. The alpha-galactosidase was a 61-kDa monomeric enzyme with a temperature optimum of 100 to 103 degrees C and t1/2 of 9 h at 85 degrees C, 2 h at 90 degrees C, and 3 min at 100 degrees C. These enzymes represent the most thermostable and thermoactive versions of these types yet reported and probably act synergistically to hydrolyze extracellular galactomannans to monosaccharides by T. neapolitana for nutritional purposes. The significance of such substrates in geothermal environments remains to be seen.

Full Text

The Full Text of this article is available as a PDF (276.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams M. W., Perler F. B., Kelly R. M. Extremozymes: expanding the limits of biocatalysis. Biotechnology (N Y) 1995 Jul;13(7):662–668. doi: 10.1038/nbt0795-662. [DOI] [PubMed] [Google Scholar]
  2. Adya S., Elbein A. D. Glycoprotein enzymes secreted by Aspergillus niger: purification and properties of alpha-glaactosidase. J Bacteriol. 1977 Feb;129(2):850–856. doi: 10.1128/jb.129.2.850-856.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bahl O. P., Agrawal K. M. Glycosidases of Aspergillus niger. I. Purification and characterization of alpha- and beta-galactosidases and beta-N-acetylglucosaminidase. J Biol Chem. 1969 Jun 10;244(11):2970–2978. [PubMed] [Google Scholar]
  4. Belkin S., Wirsen C. O., Jannasch H. W. A new sulfur-reducing, extremely thermophilic eubacterium from a submarine thermal vent. Appl Environ Microbiol. 1986 Jun;51(6):1180–1185. doi: 10.1128/aem.51.6.1180-1185.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bouquelet S., Spik G., Montreuil J. Properties of a beta-D-mannosidase from Aspergillus niger. Biochim Biophys Acta. 1978 Feb 10;522(2):521–530. doi: 10.1016/0005-2744(78)90084-0. [DOI] [PubMed] [Google Scholar]
  6. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  7. Dakhova O. N., Kurepina N. E., Zverlov V. V., Svetlichnyi V. A., Velikodvorskaya G. A. Cloning and expression in Escherichia coli of Thermotoga neapolitana genes coding for enzymes of carbohydrate substrate degradation. Biochem Biophys Res Commun. 1993 Aug 16;194(3):1359–1364. doi: 10.1006/bbrc.1993.1974. [DOI] [PubMed] [Google Scholar]
  8. Dey P. M., Patel S., Brownleader M. D. Induction of alpha-galactosidase in Penicillium ochrochloron by guar (Cyamopsis tetragonobola) gum. Biotechnol Appl Biochem. 1993 Jun;17(Pt 3):361–371. [PubMed] [Google Scholar]
  9. Gherardini F. C., Salyers A. A. Characterization of an outer membrane mannanase from Bacteroides ovatus. J Bacteriol. 1987 May;169(5):2031–2037. doi: 10.1128/jb.169.5.2031-2037.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hobbie J. E., Daley R. J., Jasper S. Use of nuclepore filters for counting bacteria by fluorescence microscopy. Appl Environ Microbiol. 1977 May;33(5):1225–1228. doi: 10.1128/aem.33.5.1225-1228.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  12. Liebl W., Feil R., Gabelsberger J., Kellermann J., Schleifer K. H. Purification and characterization of a novel thermostable 4-alpha-glucanotransferase of Thermotoga maritima cloned in Escherichia coli. Eur J Biochem. 1992 Jul 1;207(1):81–88. doi: 10.1111/j.1432-1033.1992.tb17023.x. [DOI] [PubMed] [Google Scholar]
  13. Lüthi E., Jasmat N. B., Grayling R. A., Love D. R., Bergquist P. L. Cloning, sequence analysis, and expression in Escherichia coli of a gene coding for a beta-mannanase from the extremely thermophilic bacterium "Caldocellum saccharolyticum". Appl Environ Microbiol. 1991 Mar;57(3):694–700. doi: 10.1128/aem.57.3.694-700.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. McCleary B. V. A simple assay procedure for beta-D-mannanase. Carbohydr Res. 1978 Nov;67(1):213–221. doi: 10.1016/s0008-6215(00)83743-x. [DOI] [PubMed] [Google Scholar]
  15. McCleary B. V., Matheson N. K. Enzymic analysis of polysaccharide structure. Adv Carbohydr Chem Biochem. 1986;44:147–276. doi: 10.1016/s0065-2318(08)60079-7. [DOI] [PubMed] [Google Scholar]
  16. Moore J. B., Markiewicz P., Miller J. H. Identification and sequencing of the Thermotoga maritima lacZ gene, part of a divergently transcribed operon. Gene. 1994 Sep 15;147(1):101–106. doi: 10.1016/0378-1119(94)90046-9. [DOI] [PubMed] [Google Scholar]
  17. Pederson D. M., Goodman R. E. Isozymes of alpha-galactosidase from Bacillus stearothermophilus. Can J Microbiol. 1980 Aug;26(8):978–984. doi: 10.1139/m80-166. [DOI] [PubMed] [Google Scholar]
  18. Rinker K. D., Kelly R. M. Growth Physiology of the Hyperthermophilic Archaeon Thermococcus litoralis: Development of a Sulfur-Free Defined Medium, Characterization of an Exopolysaccharide, and Evidence of Biofilm Formation. Appl Environ Microbiol. 1996 Dec;62(12):4478–4485. doi: 10.1128/aem.62.12.4478-4485.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ruttersmith L. D., Daniel R. M. Thermostable beta-glucosidase and beta-xylosidase from Thermotoga sp. strain FjSS3-B.1. Biochim Biophys Acta. 1993 Feb 13;1156(2):167–172. doi: 10.1016/0304-4165(93)90132-r. [DOI] [PubMed] [Google Scholar]
  20. Ruttersmith L. D., Daniel R. M. Thermostable cellobiohydrolase from the thermophilic eubacterium Thermotoga sp. strain FjSS3-B.1. Purification and properties. Biochem J. 1991 Aug 1;277(Pt 3):887–890. doi: 10.1042/bj2770887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Ríos S., Pedregosa A. M., Fernández Monistrol I., Laborda F. Purification and molecular properties of an alpha-galactosidase synthesized and secreted by Aspergillus nidulans. FEMS Microbiol Lett. 1993 Aug 15;112(1):35–41. doi: 10.1111/j.1574-6968.1993.tb06420.x. [DOI] [PubMed] [Google Scholar]
  22. Simpson H. D., Haufler U. R., Daniel R. M. An extremely thermostable xylanase from the thermophilic eubacterium Thermotoga. Biochem J. 1991 Jul 15;277(Pt 2):413–417. doi: 10.1042/bj2770413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Smith P. K., Krohn R. I., Hermanson G. T., Mallia A. K., Gartner F. H., Provenzano M. D., Fujimoto E. K., Goeke N. M., Olson B. J., Klenk D. C. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985 Oct;150(1):76–85. doi: 10.1016/0003-2697(85)90442-7. [DOI] [PubMed] [Google Scholar]
  24. Talbot G., Sygusch J. Purification and characterization of thermostable beta-mannanase and alpha-galactosidase from Bacillus stearothermophilus. Appl Environ Microbiol. 1990 Nov;56(11):3505–3510. doi: 10.1128/aem.56.11.3505-3510.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Vieille C., Hess J. M., Kelly R. M., Zeikus J. G. xylA cloning and sequencing and biochemical characterization of xylose isomerase from Thermotoga neapolitana. Appl Environ Microbiol. 1995 May;61(5):1867–1875. doi: 10.1128/aem.61.5.1867-1875.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Winterhalter C., Liebl W. Two Extremely Thermostable Xylanases of the Hyperthermophilic Bacterium Thermotoga maritima MSB8. Appl Environ Microbiol. 1995 May;61(5):1810–1815. doi: 10.1128/aem.61.5.1810-1815.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Zapater I. G., Ullah A. H., Wodzinski R. J. Extracellular alpha galactosidase (E.C. 3.2.1.22) from Aspergillus ficuum NRRL 3135 purification and characterization. Prep Biochem. 1990;20(3-4):263–296. doi: 10.1080/00327489008050201. [DOI] [PubMed] [Google Scholar]
  28. Zeilinger S., Kristufek D., Arisan-Atac I., Hodits R., Kubicek C. P. Conditions of formation, purification, and characterization of an alpha-galactosidase of Trichoderma reesei RUT C-30. Appl Environ Microbiol. 1993 May;59(5):1347–1353. doi: 10.1128/aem.59.5.1347-1353.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES